Abstract:
Embodiments are disclosed for adjusting alignment of a near-eye optic of a see-through head-mounted display system. In one embodiment, a method of detecting eye location for a head-mounted display system includes directing positioning light to an eye of a user and detecting the positioning light reflected from the eye of the user. The method further includes determining a distance between the eye and a near-eye optic of the head-mounted display system based on attributes of the detected positioning light, and providing feedback for adjusting the distance between the eye and the near-eye optic.
Abstract:
Embodiments are disclosed herein that relate to aligning a near-eye display of a near-eye display device with an eye of a user. For example, one disclosed embodiment provides, on a near-eye display device, a method comprising receiving an image of an eye from a camera via a reverse display optical path, detecting a location of the eye in the image, and determining a relative position of the eye with regard to a target viewing position of the near-eye display. The method further comprises determining an adjustment to make to the near-eye display device to align the location of the eye with the target viewing position.
Abstract:
Embodiments related near-eye display devices having angularly multiplexed holograms are disclosed. One disclosed embodiment provides a near-eye display device including an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating comprising a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.
Abstract:
A near-eye display system includes an image former and first and second series of mutually parallel beamsplitters. The image former is configured to form a display image and to release the display image through an exit pupil. The first series of mutually parallel beamsplitters is arranged to receive the display image from the image former. The second series of mutually parallel beamsplitters is arranged to receive the display image from the first series of beamsplitters, and to release the display image through an exit pupil longer and wider than that of the image former. The second series of beamsplitters has a different alignment and a different orientation than the first series of beamsplitters.
Abstract:
A near-eye display system includes an image former and a waveguide. The image former is configured to form a display image and to release the display image through a first exit pupil. The waveguide presents a back surface that faces the wearer's eye, and a front surface opposite the back surface. The waveguide is substantially transparent to external imagery received normal to the front surface, and is configured to receive the display image from the image former and to release the display image through a second exit pupil, which is larger than the first exit pupil.
Abstract:
A method for cleaning a bargun dispenser, the method including providing a cleaning assembly containing a reservoir, a pump and fluid connection tubes; connecting the cleaning assembly to the bargun dispenser by connecting the concentrate inlet line to the reservoir in place of the source of concentrate with one of the fluid connection tubes and connecting the water inlet line to the reservoir in place of the water supply with one of the fluid connection tubes; filling the reservoir with a cleaning solution; activating the pump of the reservoir; and activating the bargun handle buttons for opening the pump outlet lines until the reservoir is empty.
Abstract:
The invention concerns an assembly (1) for engaging and activating a bargun (2), the bargun having a handle (21) with at least one button (22, 23) on its upper surface (24) and a nozzle (25) perpendicular to the handle, the assembly comprising:—a draining body (11) presenting:. an opening (111) for receiving the bargun nozzle,. an outlet (112) configured for being connected to the drain,—a bargun holding bracket (12) attached to the draining body, said bracket defining a space (s) for holding the handle and the free end (121) of said bracket being configured for activating the at least one button on the upper surface of the handle when the handle is slid in said space.
Abstract:
A near-eye display system includes an image former and first and second series of mutually parallel beamsplitters. The image former is configured to form a display image and to release the display image through an exit pupil. The first series of mutually parallel beamsplitters is arranged to receive the display image from the image former. The second series of mutually parallel beamsplitters is arranged to receive the display image from the first series of beamsplitters, and to release the display image through an exit pupil longer and wider than that of the image former. The second series of beamsplitters has a different alignment and a different orientation than the first series of beamsplitters.
Abstract:
An electrical terminal (10) including a contact section (14) extending from a body section (12), and a pin section (16) extending from the body section to be inserted into a circuit board through hole (20). The pin section (16) is defined by a pair of spaced apart opposing legs (30) each having a compliant portion (42) defined by a pair of arcuate beams (48) spaced apart by a slot (50), the arcuate beam pair at outer edges (54) being larger in dimension than the through hole diameter. Insertion compresses the arcuate beams (48) of each pair together generating force in a first direction, and compresses the legs toward each other generating force in an orthogonal direction.