Abstract:
A method and base station apparatus for transmitting pilot data in a wireless communication system, and a method and mobile station apparatus for receiving pilot data in a wireless communication system are provided. The method for transmitting pilot data in a wireless communication system includes determining a pilot pattern in at least one resource block for each of one or more pilot streams, and transmitting the one or more pilot streams based on the determined respective pilot pattern in the at least one resource block, wherein the at least one resource block comprises a plurality of subcarriers and a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols.
Abstract:
A base station for use in a wireless network that communicates with mobile stations according to the IEEE 802.16m standard. The base station transmits unicast data and E-MBS data in the downlink to mobile stations using physical resource units (PRUs) that are partitioned into a plurality of frequency partitions. The base station transmits E-MBS data using a first set of PRUs in at least a first common frequency partition, wherein the first set of PRUs are also used by at least a second base station to transmit E-MBS data. The base station further transmits unicast data using a second set of PRUs, wherein the second set of PRUs are randomized with respect to PRUs used by the at least a second base station to transmit unicast data.
Abstract:
For use in a machine device, a method to support machine-to-machine communications over a network includes acquiring system information from the network. The method also includes determining a ranging channel during a ranging back-off window. The method further includes performing ranging based on the determined ranging channel. The method still further includes communicating over the network. The ranging channel is determined according to a ranging priority of the machine device.
Abstract:
A base station is provided. The base station includes a transmit path circuitry that generates a masking sequence to mask a cyclic redundancy check of a control channel information element. The masking sequence includes a 4-bit prefix. The three least significant bits of the 4-bit prefix indicate a message type of the control channel information element. A subscriber station is also provided. The subscriber station includes a receive path circuitry that determines a message type of a control channel information element using a three least significant bits of a 4-bit prefix of a masking sequence used to mask a cyclic redundancy check of the control channel information element.
Abstract:
A resource allocation message includes a resource allocation field. The resource allocation field includes a first field that includes either a first sub-field or a first sub-field and a second sub-field with the first sub-field configured to hold a first value that indicates two or more logical indices and the second sub-field configured to hold a third value. Each of the logical indices is associated with a sub-band pair of resource units. The sub-band pair of resource units includes either a first sub-band resource unit or a first sub-band resource unit and a second sub-band resource unit. The resource allocation field also includes a second field configured to hold a second value that indicates, either alone or in combination with the third value, a first sub-band resource unit or a second sub-band resource unit for each of the sub-band pair of resource units indicated by the first field.
Abstract:
A method enables the use of a secondary pilot signal and a secondary antenna(s) in the forward link of a CDMA-based cellular network employing a slotted transmission scheme with a time-multiplexed primary pilot signal, with backwards compatibility. The forward link is divided into a number of time slots. For communications with “legacy” mobile stations that expect transmissions from a single, primary antenna (and that expect a single, primary pilot signal), during some of the time slots, only the primary antenna is used for transmissions, including transmitting the primary pilot signal. Neither the secondary pilot channel nor any other signals from the secondary antenna are transmitted. During the remaining time slots: (i) the primary pilot signal is transmitted from the primary antenna, and the secondary pilot signal is transmitted from the secondary antenna, but at different times; and (ii) data meant for the legacy mobile stations is not transmitted.
Abstract:
A base station comprising a transmitter configured to transmit a downlink frame. The downlink frame comprises a resource allocation region, and the resource allocation region comprises a set of resource allocation messages comprising at least one resource allocation message. All or a subset of the resource allocation messages each comprise one or more fields with an indicator, interpreted from a particular field or a combination of some or all of the one or more fields, to indicate a number of resource allocation messages intended for a particular subscriber station in the resource allocation region.
Abstract:
A method is provided for controlling communications between a base station and a mobile device. The method comprises transmitting a pilot signal having at least one transmitted characteristic over a channel. A data rate control signal is received, indicating a variation between the transmitted characteristic and a corresponding actual characteristic of the pilot signal received at a remote location. The data rate control signal is modified based on a coefficient related to the bandwidth of the channel, and a transmission rate is determined based on the modified data rate control signal.
Abstract:
A method and an apparatus for wireless communication between a receiver and a transmitter in a cellular system are provided. The method comprises associating a channel of known structure at the transmitter with the transmission of a first control channel to indicate a variable structure of the first control channel to the receiver.
Abstract:
The present invention provides a method and an apparatus for wireless communication between a base station and at least two mobile stations in a cellular system. The method comprises sending on a forward link at least one of a first and a second command to the at least two mobile stations that the base station is serving on a reverse link. The method further comprises controlling a transmission in at least one of a first and a second transmission mode of at least one mobile station among the at least two mobile stations on the reverse link based on the at least one of the first and second commands. Each of at least two mobile stations may determine a change of transmission mode between an orthogonal or a non-orthogonal transmission mode on a reverse link based on a message on a forward link. A scheduler at a serving base station may match scheduling or transmission resources to the transmissions on the reverse link. The mobile stations being served may use orthogonal and non-orthogonal transmission modes for the transmissions in a non-overlapping fashion in any combination of time, frequency and spatial domains. By selectively assigning a set of mobile stations to the orthogonal or non-orthogonal modes of transmission, the serving base station may enable fairness across the mobile stations.