Abstract:
A CID management method and apparatus in a multi-hop relay BWA communication system are provided. A BS combines data destined for an RS and data to be relayed to an MS via the RS in a payload, distinguishing the data by CIDs, attaches a relay CID to the payload, and sends the payload with the relay CID to the RS. Among the data of the payload, the RS processes its data and relays to the MS the data destined for the MS by distinguishing them by the CIDs.
Abstract:
Provided is an apparatus and method for transmitting frame information in a wireless communication system using a relay scheme. In a method for transmitting frame information from an upper node in the wireless communication system, downlink section information for communication with the lower relay station for a relay service is transmitted to a lower relay station at the request of the lower relay station for an initial connection. After the initial connection, frame information for communication with the lower relay station for a relay service is transmitted to the lower relay station through the downlink section.
Abstract:
According to example embodiments, a laser optical system includes a laser generator, at least one scan module, an objective lens, a relay lens, a review optical system, and a control device. The laser generator is configured to generate a laser beam. The at least one scan module is configured to reflect the laser beam generated by the laser generator and to direct the laser beam in different directions. The objective lens is configured to focus the laser beam on a substrate. The relay lens is configured to guide the laser beam scanned by the at least one scan module to within an incident range of the objective lens. The review optical system is configured to monitor, in real time, repair of the substrate using the laser beam. The control device is configured to control the at least one scan module.
Abstract:
Provided is an apparatus and method for providing a synchronous relay service in a multi-hop relay BWA communication system. In the method, a BS-MS link subframe and an RS-MS link subframe are configured for a first section of a subframe in an ith frame. At least one of a BS-RS link subframe, an RS-RS link subframe and an RS-MS link subframe is configured for a second section of a subframe in the ith frame. The BS-MS link subframe and the RS-MS link subframe are configured for a first section of a subframe in an (i+1)th frame. At least one of the BS-RS link subframe, the RS-RS link subframe and the RS-MS link subframe is configured for a second section of a subframe in the (i+1)th frame.
Abstract:
Provided are an apparatus and method for negotiating a frame offset between a Base Station (BS) and a Relay Station (RS) in a wireless communication system using a multi-hop relay scheme. A communication method of a superordinate station includes, upon detecting an initial access of an relay station, determining an offset value between a frame number used in the superordinate station and a frame number to be used in the relay station; generating a message including RS frame offset information corresponding to the offset value; and transmitting the generated message to the relay station. Accordingly, since the base station and the relay station share the frame offset, the base station can transmit a specific broadcast message in advance to the relay station by considering the frame offset, and the relay station can transmit data, which has to be transmitted in synchronization with the base station at the same time point or at the same frame number, to a Mobile Station (MS) at an exact time point.
Abstract:
An apparatus and method for configuring a subframe to support a relay service in a multi-hop relay BWA communication system are provided, in which a first zone of a subframe is configured for at least one of communication between a BS and a first MS within the coverage area of the BS and communication between at least one RS and a second MS within the coverage area of the at least one RS, and a second zone of the subframe is configured for at least one of communication between the BS and the at least one RS and communication between the at least one RS and another RS.
Abstract:
An apparatus and method for generating an RS SCH in a wireless communication system are provided, in which a base station checks a BS SCH sequence and a mask sequence, and generates an RS SCH sequence by XOR-operating the BS SCH sequence and the mask sequence.
Abstract:
Disclosed herein is a semiconductor manufacturing apparatus. The semiconductor manufacturing apparatus precisely adjusts the position and size of a light spot formed on a substrate, enabling formation of a target pattern or elimination of an unnecessary pattern in an accurate and rapid manner. The semiconductor manufacturing apparatus includes a light source, a light modulator to modulate light irradiated from the light source into a plurality of beams to correspond to a target pattern, a diffraction element to adjust a direction of each of the plurality of beams, and an optics system to allow the plurality of beams, the direction of which has been controlled by the diffraction element, to form a light spot having a target size.
Abstract:
A signal transmission/reception apparatus of a communication system. The signal transmission apparatus receives an information vector, encodes the information vector into a structured Low Density Parity Check (LDPC) codeword using a structured LDPC coding scheme, and transmits the generated structured LDPC code to the signal reception apparatus. Then the signal reception apparatus receives a signal, and detects an information vector by decoding the received signal using a decoding scheme corresponding to the structured LDPC coding scheme used in the signal transmission apparatus.
Abstract:
A method for encoding a rate-compatible block Low Density Parity Check (LDPC) code. The method includes designing specific LDPC codes for a predetermined number of coding rates, and generating a pruning pattern by comparing information node degrees of the predetermined number of LDPC codes; matching check node degrees of the predetermined number of LDPC codes; generating a predetermined number of puncturing patterns according to the check node degree when the matched check node degree is calculated; determining whether a first condition given for the generated puncturing patterns is satisfied; and determining the generated puncturing patterns as rate-compatible puncturing patterns when the puncturing patterns satisfy the first condition.