Positive electrode materials having a superior hardness strength

    公开(公告)号:US11335907B2

    公开(公告)日:2022-05-17

    申请号:US17019626

    申请日:2020-09-14

    Abstract: A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.

    RECHARGEABLE LITHIUM ION BATTERY WITH IMPROVED LIFE CHARACTERISTICS

    公开(公告)号:US20210320354A1

    公开(公告)日:2021-10-14

    申请号:US17259662

    申请日:2019-07-10

    Abstract: A secondary Li-ion battery comprising a casing comprising as battery parts: a positive electrode comprising a powderous positive electrode active material, a negative electrode, a separator, and an electrolyte, wherein the casing is provided with means for maintaining the exterior form of the casing, and wherein the positive electrode active material has the general formula Li1+a(NixCoyMz)1−aO2, wherein M=M′1−bAb, M′ being either one or both of Al and Mg, and A being a dopant with b≤0.10, and wherein −0.03≤a≤0.03, 0.80≤×≤0.95, 0.05≤y≤0.20, z≤0.10, with x+y+z=1, and wherein the positive electrode active material has a crystallite size ≤43 nm as determined by the Sherrer equation based on the peak of the (104) plane obtained from the X-ray diffraction pattern using a Cu Kα radiation source, and wherein the positive electrode active material further comprises between 0.4 and 0.6 wt % LiOH.

    Precursor and method for preparing Ni based cathode material for rechargeable lithium ion batteries

    公开(公告)号:US11114662B2

    公开(公告)日:2021-09-07

    申请号:US16487525

    申请日:2018-02-14

    Abstract: A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1−a((Niz(Ni1/2 Mn1/2)yCox)1−k Ak)1+aO2, wherein x+y+z=1, 0.1≤x≤0.4, 0.25≤z≤0.52, A is a dopant, 0≤k≤0.1, and 0.03≤a≤0.35, wherein the precursor has a crystalline size L expressed in nm, with 15≤L≤36. Also a method is described for manufacturing a positive electrode material having a general formula Li1+a′M′1−a−O2, with M′=(Niz(Ni1/2 Mn1/2)yCOx)1−k Ak, wherein x+y+z=1.0.1≤x≤0.4, 0.25≤z≤0.52, A is a dopant, 0≤k≤0.1, and 0.01≤a′≤0.10, by sintering the lithium deficient precursor powder mixed with either one of LiOH, LiOH.H2O, in an oxidizing atmosphere at a temperature between 800 and 1000° C., for a time between 6 and 36 hrs.

    METHODS FOR PREPARING POSITIVE ELECTRODE MATERIAL FOR RECHARGEABLE LITHIUM ION BATTERIES

    公开(公告)号:US20210143423A1

    公开(公告)日:2021-05-13

    申请号:US17041022

    申请日:2019-03-13

    Abstract: A method for preparing a powderous positive electrode material comprising single crystal monolithic particles and having a general formula Li1+a((Niz(Ni1/2Mn1/2)yCox)1-k Ak)1-aO2, wherein A is a dopant, −0.03≤a≤0.06, 0.05≤x≤0.35, 0.10≤z≤0.95, x+y+z=1 and k≤0.05 is described. The method comprises providing a mixture comprising a Ni- and Co-bearing precursor and a Li bearing precursor, subjecting the mixture to a multiple step sintering process whereby in the final sintering step a sintered lithiated intermediate material is obtained comprising agglomerated primary particles having a primary particle size distribution with a D50 between 2.0 and 8.0 μm, subjecting the lithiated intermediate material to a wet ball milling step to deagglomerate the agglomerated primary particles and obtain a slurry comprising deagglomerated primary particles, separating the deagglomerated primary particles from the slurry, and heat treating the deagglomerated primary particles at a temperature between 300° C. and at least 20° C. below the temperature in the final sintering step.

    Low porosity electrodes for rechargeable batteries

    公开(公告)号:US10862121B2

    公开(公告)日:2020-12-08

    申请号:US16212244

    申请日:2018-12-06

    Abstract: A positive electrode for a rechargeable battery comprising at least 95% active cathode material with an electrode loading of at least 6 mg/cm2, and preferably at least 10 mg/cm2, and an electrode porosity of less than 2%, and preferably less than 1%. The active cathode material may comprise a bimodal composition wherein at least 70% consists of a first lithium cobalt based oxide powder having an average particle size (D50) of at least 25 μm and a BET value

Patent Agency Ranking