摘要:
A systolic linear-array modular multiplier is provided, which can perform the modular multiplication algorithm of P. L. Montgomery more efficiently. The total execution time for n-bit modular multiplication is 2n+11 cycles. The modular multiplier includes a linear array of processing elements which is constructed based on a pipeline architecture that can reduce the computation procedure by one clock period. Each of the processing elements is simple in structure, which is composed of four full adders and fourteen flip-flops. For n-bit modular multiplication, a total number of 46n+184 gates is required, which is substantially less as compared to the prior art, so that manufacturing cost of the modular multiplier can be significantly reduced. These features make the modular multiplier suitable for use in VLSI implementation of modular exponentiation which is the kernel computation in many public-key cryptosystems, such as the RSA (Rivest-Shamir-Adleman) system. With the 0.8 .mu.m CMOS technology, a clock signal up to 180 MHz can be used. In average, for n-bit modular multiplication, the encryption speed can reach 116 Kbit/s (kilobits per second), which is substantially twice that achieved by the prior art.
摘要:
Equalizing a signal includes receiving a data sequence signal having an amplitude. An adjustment of the data sequence signal operable to equalize the data sequence signal is determined. A control signal operable to adjust the amplitude of the data sequence signal in accordance with the adjustment is generated, where the control signal has an analog form. The amplitude of the data sequence signal is adjusted using the control signal in order to equalize the data sequence signal.
摘要:
Equalizing a signal includes receiving a data sequence signal having an amplitude. An adjustment of the data sequence signal operable to equalize the data sequence signal is determined. A control signal operable to adjust the amplitude of the data sequence signal in accordance with the adjustment is generated, where the control signal has an analog form. The amplitude of the data sequence signal is adjusted using the control signal in order to equalize the data sequence signal.
摘要:
A phase-locked loop system that generates an output signal having low jitter includes a phase frequency detector, a charge pump, a low jitter voltage-controlled oscillator, a system low-pass filter, and a divider. The phase frequency detector couples to an input signal line. The charge pump couples to the phase frequency detector, the low jitter voltage controlled oscillator, and the low pass filter. The low-jitter voltage controlled oscillator couples to an output signal line and to the divider. The divider couples to the phase frequency detector through a feedback signal line. The low jitter voltage controlled oscillator includes a voltage regulator, a low-pass filter, and a ring oscillator. The low jitter voltage controlled oscillator may also include a current driver. The voltage regulator couples to the low-pass filter and to the input signal line. The low-pass filter couples to the optional current driver and the ring oscillator. The ring oscillator couples to the charge pump, the optional low pass filter, the output signal line, and the divider. A method also discloses generating a low jitter output signal using a supply noise immunity low jitter voltage controlled oscillator.
摘要:
A current-mode four-quadrant analog multiplier is provided, which is constructed based on CMOS (complementary metal-oxide semiconductor) technology, capable of generating an output current signal which is proportional in magnitude to the product of two input current signals. This current-mode analog multiplier is designed based on the translinear circuit principle. The current-mode analog multiplier has high precision, wide current dynamic range, and is insensitive to temperature and process, suitable for use in VLSI implementation of many analog circuits and systems, such as fuzzy logic controllers and analog neural networks.