Abstract:
The customer experience is enhanced by detecting leakage-to-voice from chats and providing recommendations to operations, chat agents, and customers. A chat is classified into leakage-to-voice or leakage-to-text chat and actionable recommendations are then provided to operations, chat agents, and customers based on the leakage information. Once leakage is identified, various other insights are extracted from chats and such insights are fed into the knowledge-base. Such insights also used in agent training and are provided to chat agents as recommendations. This results in a better customer experience.
Abstract:
User interactions are categorized into predefined hierarchical categories by classifying user interactions, such as queries, during a user interaction session by labeling text data into predefined hierarchical categories, and building a scoring model. The scoring model is then executed on untagged user interaction data to classify the user interactions into either action-based or information-based interactions.
Abstract:
A computer-implemented method and an apparatus for personalizing customer interaction experiences receives an input corresponding to at least one of a business objective and a customer interaction channel. A customer classification framework is selected based on the input. The customer classification framework is associated with a plurality of persona types, where each persona type is associated with a set of behavioral traits. A persona type for a customer is predicted from among the plurality of persona types during an interaction on the customer interaction channel. A propensity of the customer to perform at least one action is predicted based on the persona type. A provisioning of personalized interaction experience to the customer is facilitated based on the predicted propensity of the customer to perform the at least one action.
Abstract:
An embodiment of the invention takes advantage of the fact that the intuitive power of a self-serve app lies in constant learning. The app must quickly evolve to predict customer needs and provide the right content to the right customer. In an embodiment, Web and mobile self-serve apps are optimized by leveraging the chat data of drop-off customers from each screen of the app. In an embodiment, self-serve drop-off data is combined with chat data, the customer's identity data and Web log data to provide a powerful source for driving the targeting and content optimization of the app.
Abstract:
A computer-implemented method and an apparatus to facilitate building of prediction models from customer Web logs includes receiving a Web log including unstructured data and structured data corresponding to a customer's journey on a Website. The structured data in the Web log is used to generate structured variables and the unstructured data in the Web log is used to generate unstructured variables. The generated structured and unstructured variables are concatenated to form a session string, which serves as a textual representation of the customer's journey on the Website. The session string is subjected to text-based processing to generate a plurality of features. The plurality of features are used to build one or more prediction models for facilitating prediction of at least one response variable corresponding to the customers visiting the Website.
Abstract:
A computer-implemented method and an apparatus facilitate user engagement on enterprise interaction channels. Information related to a current journey of a user on one or more enterprise interaction channels is received. The user is categorized as one of a hot lead, a warm lead, and a non-hot lead based, at least in part, based on the received information related to the current journey of the user. If the user is categorized as the non-hot lead, a user interface (UI) displayed to the user is modified. The UI is modified to facilitate user engagement for converting the user from a non-purchasing entity to a purchasing entity.
Abstract:
The customer experience is enhanced by detecting leakage-to-voice from chats and providing recommendations to operations, chat agents, and customers. A chat is classified into leakage-to-voice or leakage-to-text chat and actionable recommendations are then provided to operations, chat agents, and customers based on the leakage information. Once leakage is identified, various other insights are extracted from chats and such insights are fed into the knowledge-base. Such insights also used in agent training and are provided to chat agents as recommendations. This results in a better customer experience.