Abstract:
The present invention generally relates to a gas turbine and more in particular it is related to a damper assembly for a combustion chamber of a gas turbine. According to preferred embodiments, the present solution provides a damper assembly including protrusions on a wall of the neck. These protrusions result in a side wall reactance to the acoustic field that has the effect of decreasing the effective speed of sound in the neck. The decrease of the effective speed of sound in the neck is equivalent to an increase of the effective neck length.
Abstract:
A mountable attachment for positioning a sensor in an environment, like a combustion chamber of a gas turbine is disclosed. The mountable attachment includes a mounting member having a hollow elongated configuration for incorporating the sensor therewithin. The attachment further includes at least one primary resilient member disposed within the mounting member in a coordinating manner with the sensor for applying an axially outward force on the mounting member to prevent thereto from loosening from a counterpart , and providing a mounting torque for mounting the sensor at a target position within the environment . The attachment may also include additional resilient member, such as a secondary resilient member, which may in combination with the primary resilient members attain a resulting mounting force to prevent the mounting member from loosening from the counterpart.
Abstract:
A combustor transition adapted to guide combustion gases in a hot gas flow path extending between a can combustor and a first stage of turbine in a gas turbine is disclosed. The combustor transition includes a duct having an upstream end adapted for connection to the can combustor and a downstream end adapted for connection to a first stage of a turbine, wherein the downstream end includes an outer wall, an inner wall, a first and a second side wall. At least one side wall has a side wall extension which extends in a downstream direction beyond the outlet. The side wall extension at least partly encloses a first resonator volume and at least one side wall extension includes a resonator hole, which is configured as a neck of a Helmholtz-damper. A method for retrofitting a gas turbine and method for borescope inspection of a GT are disclosed.
Abstract:
The present invention generally relates to a gas turbine and more in particular it is related to a damper assembly for a combustion chamber of a gas turbine. According to preferred embodiments, the present solution provides a damper assembly including protrusions on a wall of the neck. These protrusions result in a side wall reactance to the acoustic field that has the effect of decreasing the effective speed of sound in the neck. The decrease of the effective speed of sound in the neck is equivalent to an increase of the effective neck length.
Abstract:
The damper arrangement include two concentric hollow shapes, each having a wall, wherein the walls form an annular volume therebetween. The damper arrangement further includes one or more necks for connecting to a combustion chamber at corresponding one or more contact points. The one or more necks are connected to the annular volume.
Abstract:
An acoustic damper arrangement for a combustor which has an inner liner configured for use at a first temperature during operation and an outer liner configured for operation at a second temperature lower than the first temperature during operation is disclosed, the acoustic damper arrangement comprising: a plurality of flexible sheets; and at least one hollow body having an interior volume, each of said at least one hollow body being fixed to one of the plurality of flexible sheets, wherein the acoustic damper arrangement is configured to be fixed to both the inner liner and the outer liner such that the interior volume of the at least one hollow body is in communication with a chamber formed by the inner liner, and the plurality of flexible sheets accommodate expansion and contraction of the inner liner relative to the outer liner.
Abstract:
The invention concerns a damper arrangement for reducing combustion-chamber pulsation arising inside a gas turbine, wherein the gas turbine includes at least one compressor, a primary combustor which is connected downstream to the compressor, and the hot gases of the primary combustor are admitted at least to an intermediate turbine or directly or indirectly to a secondary combustor. The hot gases of the secondary combustor are admitted to a further turbine or directly or indirectly to an energy recovery, wherein at least one combustor is arranged in a can-architecture. At least one combustor liner includes air passages, wherein at least one of the air passages is formed as a damper neck. The damper neck being actively connected to a damper volume, and the damper volume is part of a connecting duct extending between a compressor air plenum and the combustor.
Abstract:
The invention relates to a damping device for a gas turbine combustor with significantly reduced cooling air mass flow requirements. The damping device includes a wall with a first inner wall and a second outer wall, arranged in a distance to each other. The inner wall is subjected to high temperatures on a side with a hot gas flow. A plurality of cooling channels extend essentially parallel between the first inner wall and the second outer wall, and at least one damping volume bordered by cooling channels. Furthermore, the damping device includes a first passage for supplying a cooling medium from a cooling channel into the damping volume and a second passage for connecting the damping volume to the combustion chamber. An end plate, fixed to the inner wall, separates the damping volume from the combustion chamber.
Abstract:
A method and apparatus are disclosed for operating a combustion device during a transient operation. The combustion device is fed with at least a fuel. The transient operation includes a period having a period length (T) during which the fuel is fed in an amount lower that a designated (e.g., critical) amount (Mc). A limit value (L) is defined for the period length (T), and fuel feed is regulated to keep the period length (T) smaller or equal to the limit value (L).
Abstract:
The present invention relates to a damping device for a combustor of a gas turbine for suppressing combustion instabilities. More specifically, the invention relates to a design of a broadband damping device for a low emission combustor having at least one resonator for damping pressure fluctuations in the combustion chamber. It is an object of the invention to provide a damping device with a quarter wave damper having broadband characteristics. The damping device for a combustor of a gas turbine according to the invention comprises a casing defining a resonator volume, a hole at a front face of the casing for allowing fluid communication between the resonator volume and the combustion chamber, the casing having parameters such that it acts as a quarter wave damper, is characterized in that the resonator volume is limited by a rear face and at least one lateral surface of the casing, whereby at least one lateral surface is equipped with one or more cavities inside and the rear face is equipped with at least one feed hole for feeding a purging fluid into the resonator volume. The preferably groove-shaped side cavities initiate energy dissipating vertical flows.