-
公开(公告)号:US20220387219A1
公开(公告)日:2022-12-08
申请号:US17820848
申请日:2022-08-18
Applicant: AMO DEVELOPMENT, LLC
Inventor: David D. Scott , Javier Gonzalez , David Dewey , Noah Bareket , Georg Schuele
Abstract: Methods and apparatus are configures to measure an eye without contacting the eye with a patient interface, and these measurements are used to determine alignment and placement of the incisions when the patient interface contacts the eye. The pre-contact locations of one or more structures of the eye can be used to determine corresponding post-contact locations of the one or more optical structures of the eye when the patient interface has contacted the eye, such that the laser incisions are placed at locations that promote normal vision of the eye. The incisions are positioned in relation to the pre-contact optical structures of the eye, such as an astigmatic treatment axis, nodal points of the eye, and visual axis of the eye.
-
公开(公告)号:US20220269829A1
公开(公告)日:2022-08-25
申请号:US17662829
申请日:2022-05-10
Applicant: AMO Development, LLC
Inventor: Javier G. Gonzalez , David A. Dewey , Noah Bareket , Michael A. Campos , Yu-tai Ray Chen , David D. Scott
Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.
-
公开(公告)号:US20220110520A1
公开(公告)日:2022-04-14
申请号:US17645747
申请日:2021-12-23
Applicant: AMO Development, LLC
Inventor: Georg Schuele , Noah Bareket , David Dewey , John S. Hart , Javier G. Gonzalez , Raymond Woo , Thomas Z. Teisseyre , Jeffrey A. Golda , Katrina B. Sheehy , Madeleine C. O'Meara , Bruce Woodley
Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
-
公开(公告)号:US20240366085A1
公开(公告)日:2024-11-07
申请号:US18771735
申请日:2024-07-12
Applicant: AMO Development, LLC
Inventor: Georg Schuele , Noah Bareket , David Dewey , John S. Hart , Javier G. Gonzalez , Raymond Woo , Thomas Z. Teisseyre , Jeffrey A. Golda , Katrina B. Sheehy , Madeleine C. O'Meara , Bruce Woodley
Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.
-
15.
公开(公告)号:US20220273493A1
公开(公告)日:2022-09-01
申请号:US17664216
申请日:2022-05-19
Applicant: AMO DEVELOPMENT, LLC
Inventor: Rajeshwari Srinivasan , Jeffrey A. Golda , Javier G. Gonzalez , David D. Scott , David A. Dewey , Noah Bareket , Georg Schuele
Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.
-
公开(公告)号:US11331220B2
公开(公告)日:2022-05-17
申请号:US14885824
申请日:2015-10-16
Applicant: AMO DEVELOPMENT, LLC
Inventor: Javier G. Gonzalez , David A. Dewey , Noah Bareket , Michael A. Campos , Yu-tai Ray Chen , David D. Scott
Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.
-
-
-
-
-