CORNEAL TOPOGRAPHY MEASUREMENT AND ALIGNMENT OF CORNEAL SURGICAL PROCEDURES

    公开(公告)号:US20220387219A1

    公开(公告)日:2022-12-08

    申请号:US17820848

    申请日:2022-08-18

    Abstract: Methods and apparatus are configures to measure an eye without contacting the eye with a patient interface, and these measurements are used to determine alignment and placement of the incisions when the patient interface contacts the eye. The pre-contact locations of one or more structures of the eye can be used to determine corresponding post-contact locations of the one or more optical structures of the eye when the patient interface has contacted the eye, such that the laser incisions are placed at locations that promote normal vision of the eye. The incisions are positioned in relation to the pre-contact optical structures of the eye, such as an astigmatic treatment axis, nodal points of the eye, and visual axis of the eye.

    AUTOMATIC PATIENT POSITIONING WITHIN A LASER EYE SURGERY SYSTEM

    公开(公告)号:US20220269829A1

    公开(公告)日:2022-08-25

    申请号:US17662829

    申请日:2022-05-10

    Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.

    CONFOCAL LASER EYE SURGERY SYSTEM
    13.
    发明申请

    公开(公告)号:US20220110520A1

    公开(公告)日:2022-04-14

    申请号:US17645747

    申请日:2021-12-23

    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.

    CONFOCAL LASER EYE SURGERY SYSTEM
    14.
    发明申请

    公开(公告)号:US20240366085A1

    公开(公告)日:2024-11-07

    申请号:US18771735

    申请日:2024-07-12

    Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.

    CORNEAL TOPOGRAPHY MEASUREMENTS AND FIDUCIAL MARK INCISIONS IN LASER SURGICAL PROCEDURES

    公开(公告)号:US20220273493A1

    公开(公告)日:2022-09-01

    申请号:US17664216

    申请日:2022-05-19

    Abstract: A method of cataract surgery in an eye of a patient includes identifying a feature selected from the group consisting of an axis, a meridian, and a structure of an eye by corneal topography and forming fiducial mark incisions with a laser beam along the axis, meridian or structure in the cornea outside the optical zone of the eye. A laser cataract surgery system a laser source, a topography measurement system, an integrated optical subsystem, and a processor in operable communication with the laser source, corneal topography subsystem and the integrated optical system. The processor includes a tangible non-volatile computer readable medium comprising instructions to determine one of an axis, meridian and structure of an eye of the patient based on the measurements received from topography measurement system, and direct the treatment beam so as to incise radial fiducial mark incisions.

    Automatic patient positioning within a laser eye surgery system

    公开(公告)号:US11331220B2

    公开(公告)日:2022-05-17

    申请号:US14885824

    申请日:2015-10-16

    Abstract: A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.

Patent Agency Ranking