Abstract:
A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye, the patient interface using liquid used as a transmission medium for the laser. During a laser procedure sensors monitor the level of liquid within the patient interface and send a signal to control electronics if the level drops below a threshold value. The sensor may be mounted on the inside of the patient interface, within a fluid chamber. Alternatively, a gas flow meter may be added to a suction circuit for the patient interface that detects abnormal suction levels indicating low fluid level.
Abstract:
A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye. The patient interface may be a liquid-filled interface, with liquid used as a transmission medium for the laser. During a laser procedure various inputs are monitored to detect a leak. The inputs may include a video feed of the eye looking for air bubbles in the liquid medium, the force sensors on the patient interface that detect patient movement, and vacuum sensors directly sensing the level of suction between the patient interface and the eye. The method may include combining three monitoring activities with a Bayesian algorithm that computes the probabilities of an imminent vacuum loss event.
Abstract:
A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye. The patient interface may be a liquid-filled interface, with liquid used as a transmission medium for the laser. During a laser procedure various inputs are monitored to detect a leak. The inputs may include a video feed of the eye looking for air bubbles in the liquid medium, the force sensors on the patient interface that detect patient movement, and vacuum sensors directly sensing the level of suction between the patient interface and the eye. The method may include combining three monitoring activities with a Bayesian algorithm that computes the probabilities of an imminent vacuum loss event.
Abstract:
Some embodiments disclosed here provide for a method fragmenting a cataractous lens of a patient's eye using an ultra-short pulsed laser. The method can include determining, within a lens of a patient's eye, a high NA zone where a cone angle of a laser beam with a high numerical aperture is not shadowed by the iris, and a low NA zone radially closer to the iris where the cone angle of the laser beam with a low numerical aperture is not shadowed by the iris. Laser lens fragmentation is accomplished by delivering the laser beam with the high numerical aperture to the high NA zone, and the laser beam with the low numerical aperture to the low NA zone. This can result in a more effective fragmentation of a nucleus of the lens without exposing the retina to radiation above safety standards.
Abstract:
A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye, the patient interface using liquid used as a transmission medium for the laser. During a laser procedure sensors monitor the level of liquid within the patient interface and send a signal to control electronics if the level drops below a threshold value. The sensor may be mounted on the inside of the patient interface, within a fluid chamber. Alternatively, a gas flow meter may be added to a suction circuit for the patient interface that detects abnormal suction levels indicating low fluid level.
Abstract:
Some embodiments disclosed here provide for a method fragmenting a cataractous lens of a patient's eye using an ultra-short pulsed laser. The method can include determining, within a lens of a patient's eye, a high NA zone where a cone angle of a laser beam with a high numerical aperture is not shadowed by the iris, and a low NA zone radially closer to the iris where the cone angle of the laser beam with a low numerical aperture is not shadowed by the iris. Laser lens fragmentation is accomplished by delivering the laser beam with the high numerical aperture to the high NA zone, and the laser beam with the low numerical aperture to the low NA zone. This can result in a more effective fragmentation of a nucleus of the lens without exposing the retina to radiation above safety standards.
Abstract:
Some embodiments disclosed here provide for a method fragmenting a cataractous lens of a patient's eye using an ultra-short pulsed laser. The method can include determining, within a lens of a patient's eye, a high NA zone where a cone angle of a laser beam with a high numerical aperture is not shadowed by the iris, and a low NA zone radially closer to the iris where the cone angle of the laser beam with a low numerical aperture is not shadowed by the iris. Laser lens fragmentation is accomplished by delivering the laser beam with the high numerical aperture to the high NA zone, and the laser beam with the low numerical aperture to the low NA zone. This can result in a more effective fragmentation of a nucleus of the lens without exposing the retina to radiation above safety standards.
Abstract:
Some embodiments disclosed here provide for a method fragmenting a cataractous lens of a patient's eye using an ultra-short pulsed laser. The method can include determining, within a lens of a patient's eye, a high NA zone where a cone angle of a laser beam with a high numerical aperture is not shadowed by the iris, and a low NA zone radially closer to the iris where the cone angle of the laser beam with a low numerical aperture is not shadowed by the iris. Laser lens fragmentation is accomplished by delivering the laser beam with the high numerical aperture to the high NA zone, and the laser beam with the low numerical aperture to the low NA zone. This can result in a more effective fragmentation of a nucleus of the lens without exposing the retina to radiation above safety standards.
Abstract:
A laser eye surgery system produces a treatment beam that includes a plurality of laser pulses. An optical coherence tomography (OCT) subsystem produces a source beam used to locate one or more structures of an eye. The OCT subsystem is used to sense the distance between a camera objective on the underside of the laser eye surgery system and the patient's eye. Control electronics compare the sensed distance with a pre-determined target distance, and reposition a movable patient support toward or away the camera objective until the sensed distance is at the pre-determined target distance. A subsequent measurement dependent upon the spacing between the camera objective and the patient's eye is performed, such as determining the astigmatic axis by observing the reflection of a plurality of point source LEDs arranged in concentric rings off the eye.
Abstract:
A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye, the patient interface using liquid used as a transmission medium for the laser. During a laser procedure sensors monitor the level of liquid within the patient interface and send a signal to control electronics if the level drops below a threshold value. The sensor may be mounted on the inside of the patient interface, within a fluid chamber. Alternatively, a gas flow meter may be added to a suction circuit for the patient interface that detects abnormal suction levels indicating low fluid level.