Abstract:
A device displays a user interface that includes a content area and a deletion control. The device detects an input that includes a contact on the deletion control. In response, the device deletes content in the content area based on a duration and intensity of the contact, including: when the contact was maintained for a first time period without the intensity increasing above a threshold, deleting a first-type of sub-units of the content at a rate that does not vary based on the intensity; when the contact was maintained for a second time period without the intensity increasing above the threshold, deleting a second-type of sub-units of the content at a rate that does not vary based on the intensity; and when the intensity of the contact increased above the threshold, deleting sub-units of the content at a rate that varies based on the characteristic intensity of the contact.
Abstract:
A method for processing a sound program by a playback system, in which a virtual center channel is extracted from the sound program and a dynamic range compression and a boost are applied to produce a compressed virtual center channel. This is then used to produce a speaker driver signal. Other aspects are also described and claimed.
Abstract:
A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
Abstract:
A directivity adjustment device that maintains a constant direct-to-reverberant ratio based on the detected location of a listener in relation to the speaker array is described. The directivity adjustment device may include a distance estimator, a directivity compensator, and an array processor. The distance estimator detects the distance between the speaker array and the listener. Based on this detected distance, the directivity compensator calculates a directivity index form a beam produced by the speaker array that maintains a predefined direct-to-reverberant sound energy ratio. The array processor receives the calculated directivity index and processes each channel of a piece of sound program content to produce a set of audio signals that drive one or more of the transducers in the speaker array to generate a beam pattern with the calculated directivity index.
Abstract:
A binaural sound reproduction system, and methods of using the binaural sound reproduction system to dynamically re-center a frame of reference for a virtual sound source, are described. The binaural sound reproduction system may include a reference device, e.g., a mobile device, having a reference sensor to provide reference orientation data corresponding to a direction of the reference device, and a head-mounted device, e.g., headphones, having a device sensor to provide device orientation data corresponding to a direction of the head-mounted device. The system may use the reference orientation data to determine whether the head-mounted device is being used in a static or dynamic use case, and may adjust an audio output to render the virtual sound source in an adjusted source direction based on the determined use case. Other embodiments are also described and claimed.
Abstract:
An audio system is provided that efficiently detects speaker arrays and configures the speaker arrays to output sound. In this system, a computing device may record the addresses and/or types of speaker arrays on a shared network while a camera captures video of a listening area, including the speaker arrays. The captured video may be analyzed to determine the location of the speaker arrays, one or more users, and/or the audio source in the listening area. While capturing the video, the speaker arrays may be driven to sequentially emit a series of test sounds into the listening area and a user may be prompted to select which speaker arrays in the captured video emitted each of the test sounds. Based on these inputs from the user, the computing device may determine an association between the speaker arrays on the shared network and the speaker arrays in the captured video.
Abstract:
A transition between a stereophonic presentation and a monophonic presentation of a stereophonic input signal that includes a left channel signal and a right channel signal extracts content that is present at similar levels but not in-phase between the left and right channel signals to produce at least one of a left enhancement signal and a right enhancement signal. The left channel signal, the right channel signal, and only one of the left and right enhancement signals are combined to produce a monophonic signal for the monophonic presentation. Cross-fading between the left channel signal and the monophonic signal and between the right channel signal and the monophonic signal may be used to transition between the stereophonic presentation and the monophonic presentation. The stereophonic input signal may be up-mixed to produce enhancement signal. A similar transition between a multichannel presentation and a monophonic presentation of a multichannel signal is described.
Abstract:
An audio system having a variable reset volume, and a method of conditionally resetting a volume parameter, are described. The audio system can include a processor to generate an audio signal for a speaker to convert into a sound. A volume parameter of the audio signal can be set before a user pauses playback of the audio signal. The processor can determine that the volume parameter is outside of a resting volume range, and that the user resumes playback of the audio signal at least a selected interval after pausing playback. The processor can responsively reset the volume parameter when playback is resumed to a different level based on one or more acoustic factors, such as an audio decay time of a surrounding environment. The different level can be within the resting volume range. Other aspects are also described and claimed.
Abstract:
An audio system includes one or more loudspeaker cabinets, each having loudspeakers. The system outputs an omnidirectional sound pattern to determine the acoustic environment. Sensing logic determines an acoustic environment of the loudspeaker cabinets. The sensing logic may include an echo canceller. A playback mode processor adjusts an audio program according to a playback mode determined from the acoustic environment of the audio system. The system may produce a directional pattern superimposed on an omnidirectional pattern, if the acoustic environment is in free space. The system may aim ambient content toward a wall and direct content away from the wall, if the acoustic environment is not in free space. The sensing logic automatically determines the acoustic environment upon initial power up and when position changes of loudspeaker cabinets are detected. Accelerometers may detect position changes of the loudspeaker cabinets.
Abstract:
An audio system includes a loudspeaker cabinet defining a longitudinal axis. Several loudspeaker transducers are distributed around the longitudinal axis. The audio system includes an audio rendering processor to cause the loudspeaker transducers to emit a sound field approximating a desired contour. The desired contour can be decomposed into a combination of several constituent modal beam components, and the audio rendering processor can render a truncated version of the decomposition to render an approximation of the desired contour. The desired contour can be one of a plurality of contours stored in a memory, or can be user defined. The cabinet includes a processor and a memory having instructions that, when executed by the processor, cause the audio system decompose a desired contour and to render a truncated version of the decomposition. Related principles are described by way of reference to method and apparatus examples.