Abstract:
A method of temperature compensation in an optical-fingerprint detection system includes acquiring a first reading associated with one or more pixels of an array. The first reading is a baseline reading. The method further includes acquiring a second reading associated with the one or more pixels of the array. The second reading includes the baseline plus a signal. Producing a temperature compensated signal reading by subtracting the first reading from the second reading. The array is an optical-fingerprint array, and each pixel of the array is coupled to a readout circuit via a pixel switch. The method includes row-based and frame-based schemes and a blind pixel scheme. Readout circuit improvements including multiplexed analog front-end (AFE), charge magnifier with column charge offset compensation and a low-noise gate driver circuit are provided.
Abstract:
The disclosure relates to a touch and/or proximity detection system having some components operating in the guard domain and other components operating in the earth or chassis ground domain. A guard chip in the earth or chassis ground domain can include a voltage driver configured to produce a guard signal, for example. In some examples, the guard signal can be coupled to one or more shielding electrodes of a touch screen and to the ground pin of one or more touch sensing chips of the touch and/or proximity detection system. In this way, for example, the touch sensing chips, which can include sense amplifiers coupled to one or more sensing electrodes of the touch screen, can operate in the guard domain. In some examples, the guard chip can further include differential amplifiers and/or ADCs, allowing these components to operate in the earth or chassis ground domain.
Abstract:
A switching circuit is disclosed. The switching circuit can comprise a plurality of pixel mux blocks, each of the pixel mux blocks configured to be coupled to a respective touch node electrode on a touch sensor panel, and each of the pixel mux blocks including logic circuitry. The switching circuit can also comprise a plurality of signal lines configured to be coupled to sense circuitry, at least one of the signal lines configured to transmit a touch signal from one of the respective touch node electrodes to the sense circuitry. The logic circuitry in each pixel mux block of the plurality of pixel mux blocks can be configured to control the respective pixel mux block so as to selectively couple the respective pixel mux block to any one of the plurality of signal lines.
Abstract:
Power consumption of touch sensing operations for touch sensitive devices can be reduced by implementing a coarse scan (e.g., banked common mode scan) to coarsely detect the presence or absence of an object touching or proximate to a touch sensor panel and the results of the coarse scan can be used to dynamically adjust the operation of the touch sensitive device to perform or not perform a fine scan (e.g., targeted active mode scan). In some examples, the results of the coarse scan can be used to program a touch controller for the next touch sensing frame to idle when no touch event is detected or to perform a fine scan when one or more touch events are detected. In some examples, the results of the coarse scan can be used to abort a scheduled fine scan during the current touch sensing frame when no touch event is detected.
Abstract:
Power management for a touch controller is disclosed. The touch controller can include a transmit section for transmitting stimulation signals to an associated touch sensor panel to drive the panel, where the touch controller can selectively adjust the transmit section to reduce power during the transmission. The touch controller can also include a receive section for receiving touch signals resulting from the driving of the panel, where the touch controller can selectively adjust the receive section to reduce power during the receipt of the touch signals. The touch controller can also include a demodulation section for demodulating the received touch signals to obtain touch event results, where the touch controller can selectively adjust the demodulation section to reduce power during the demodulation of the touch signals. The touch controller can also selectively reduce power below present low levels during idle periods. The touch controller can be incorporated into a touch sensitive device.
Abstract:
A multi-stimulus controller for a multi-touch sensor is formed on a single integrated circuit (single-chip). The multi-stimulus controller includes a transmit oscillator, a transmit signal section that generates a plurality of drive signals based on a frequency of the transmit oscillator, a plurality of transmit channels that transmit the drive signals simultaneously to drive the multi-touch sensor, a receive channel that receives a sense signal resulting from the driving of the multi-touch sensor, a receive oscillator, and a demodulation section that demodulates the received sense signal based on a frequency of the receive oscillator to obtain sensing results, the demodulation section including a demodulator and a vector operator.
Abstract:
The use of one or more proximity sensors in combination with one or more touch sensors in a multi-touch panel to detect the presence of a finger, body part or other object and control or trigger one or more functions in accordance with an “image” of touch provided by the sensor outputs is disclosed. In some embodiments, one or more infrared (IR) proximity sensors can be driven with a specific stimulation frequency and emit IR light from one or more areas, which can in some embodiments correspond to one or more multi-touch sensor “pixel” locations. The reflected IR signal, if any, can be demodulated using synchronous demodulation. In some embodiments, both physical interfaces (touch and proximity sensors) can be connected to analog channels in the same electrical core.
Abstract:
Power management system or a touch controller can include a transmit section for transmitting stimulation signals to an associated touch sensor panel to drive the panel, where the touch controller can selectively adjust the transmit section to reduce power during the transmission. The touch controller can also include a receive section for receiving touch signals resulting from the driving of the panel, where the touch controller can selectively adjust the receive section to reduce power during the receipt of the touch signals. The touch controller can also include a demodulation section for demodulating the received touch signals to obtain touch event results, where the touch controller can selectively adjust the demodulation section to reduce power during the demodulation of the touch signals. The touch controller can also selectively reduce power below present low levels during idle periods. The touch controller can be incorporated into a touch sensitive device.
Abstract:
An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LED s/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
Abstract:
A head-mounted device having a plurality of electrodes configured to detect optical events such as the movement of one or more eyes or coarse eye gestures is disclosed. In some examples, the one or more electrodes can be coupled to dielectric elastomer materials whose shape can be changed to vary contact between a user of the head-mounted device and the one or more electrodes to ensure sufficient contact and electrode signal quality. In some examples, the one or more electrodes can be coupled to pressure sensors and control circuitry to monitor and adjust the applied pressure. In some examples, the optical events can be used as triggers for operating the device, including transitioning between operational power modes. In some examples, the triggers can invoke higher resolution sensing capabilities of the head-mounted device. In some examples, the electrodes can be used as an on-head detector to wake-up and/or unlock the device.