Abstract:
The present invention can include three-dimensional remote control systems that can detect an absolute location to which a remote control is pointing in first and second orthogonal axes and an absolute position of the remote control in a third orthogonal axis. Remote control systems of the present invention can employ absolute position detection with relative position detection. Absolute position detection can indicate an initial absolute position of the remote control and relative position detection can indicate changes in the position of the remote control. By combining absolute and relative position detection, remote control systems of the present invention can track remote controls more precisely than systems that only employ absolute position detection. The present invention also can include methods and apparatus for zooming in and out of an image shown on a display based on the absolute position of the remote control in the third axis.
Abstract:
There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
Abstract:
There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
Abstract:
There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
Abstract:
Methods and apparatuses are disclosed that provide increased control of backlit keys for a keyboard. Some embodiments may include controllers within the keyboard that are capable of dynamically programming illumination of the keyboard based upon interaction, where each key of the keyboard may be individually programmed in a dynamic manner. For example, a spell checking function may be executing on a computer system, and as the user types various words, the keyboard may dynamically program the illumination of keyboard controllers such that the next letter of the word being typed is illuminated by the keyboard. Also, different keyboard illumination schemes may be generated based upon mouse movements by the user and/or based upon which application is currently executing.
Abstract:
There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
Abstract:
The present invention can include three-dimensional remote control systems that can detect an absolute location to which a remote control is pointing in first and second orthogonal axes and an absolute position of the remote control in a third orthogonal axis. Remote control systems of the present invention can employ absolute position detection with relative position detection. Absolute position detection can indicate an initial absolute position of the remote control and relative position detection can indicate changes in the position of the remote control. By combining absolute and relative position detection, remote control systems of the present invention can track remote controls more precisely than systems that only employ absolute position detection. The present invention also can include methods and apparatus for zooming in and out of an image shown on a display based on the absolute position of the remote control in the third axis.
Abstract:
There are provided systems, devices and methods for operating a housing for an electronic device as an input/output (I/O) device. In one embodiment, an electronic device includes a housing configured to function as an integrated housing and I/O device and one or more sensors obscured by a panel of the housing. The one or more sensors being configured to sense via the panel of the housing. The electronic device further includes a processing unit communicatively coupled to the one or more sensors and configured to interpret electrical signals generated by the one or more sensors. One or more output devices are communicatively coupled to the processing unit and configured to provide an output in response to the one or more sensors generating an electrical signal.
Abstract:
Remote control systems that can distinguish predetermined light sources from stray light sources, e.g., environmental light sources and/or reflections are provided. The predetermined light sources can be disposed in asymmetric substantially linear or two-dimensional patterns. The predetermined light sources also can output waveforms modulated in accordance with one or more signature modulation characteristics. The predetermined light sources also can output light at different signature wavelengths.
Abstract:
Systems and methods for associating a remote controller with a device are provided. The systems and methods generally relate to receiving a request from a remote controlled to pair the remote controller to a device at several devices and determining at each of the several devices the strength of the wireless pairing request signal received by that device. If a device determines that its received signal is the strongest, the device may be paired with the remote controller. If instead a device determines that its received signal is not the strongest, it may ignore subsequent communications received from the remote controller.