Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
Methods and apparatuses are disclosed that provide increased control of backlit keys for a keyboard. Some embodiments may include controllers within the keyboard that are capable of dynamically programming illumination of the keyboard based upon interaction, where each key of the keyboard may be individually programmed in a dynamic manner. For example, a spell checking function may be executing on a computer system, and as the user types various words, the keyboard may dynamically program the illumination of keyboard controllers such that the next letter of the word being typed is illuminated by the keyboard. Also, different keyboard illumination schemes may be generated based upon mouse movements by the user and/or based upon which application is currently executing.
Abstract:
The present disclosure is related to printed circuit board packages and methods of assembly that may be used in the fabrication of electrical devices. Printed circuit board packages may be manufactured by stacking printed circuit board assemblies. Each printed circuit board assembly may have multiple printed circuit boards supported by a resin mold. The printed circuit board assemblies may be shaped to improve space utilization efficiency and to accommodate large electrical components that are attached to the printed circuit board package.
Abstract:
The subject matter of the disclosure relates to low temperature power throttling at a mobile device to reduce the likelihood of an unexpected power down event in cold weather environments. A mobile device employing a power management solution may be configured to determine that a monitored temperature at the mobile device (at the battery of the mobile device) is below a first threshold level, and whether a hardware component (such as a camera) is active or inactive. Then, based on these determinations, the mobile device can select a throttle setting from a first set of throttle settings when the hardware component is active, and a second set of throttle settings when the hardware component is inactive. Subsequently the mobile device can throttle power consumption for one or more components of the mobile device according to the selected throttle setting.
Abstract:
Methods and apparatuses are disclosed that provide increased control of backlit keys for a keyboard. Some embodiments may include controllers within the keyboard that are capable of dynamically programming illumination of the keyboard based upon interaction, where each key of the keyboard may be individually programmed in a dynamic manner. For example, a spell checking function may be executing on a computer system, and as the user types various words, the keyboard may dynamically program the illumination of keyboard controllers such that the next letter of the word being typed is illuminated by the keyboard. Also, different keyboard illumination schemes may be generated based upon mouse movements by the user and/or based upon which application is currently executing.
Abstract:
A circuit board assembly in an electronic is disclosed. To conserve space in the electronic device, the circuit board assembly includes stacked circuit boards in electrical communication with each other, such as a first circuit board stacked over a second circuit board. Each circuit board may include multiple surfaces that carry operational components. Moreover, the first circuit board may include a first surface and the second circuit board may include a second surface facing the first surface. The first and second surfaces may include operational components in corresponding locations. Also, the operational components may include corresponding shapes such that one component is positioned in another component. The components may electrically connect to each other. Also, the circuit board assembly may include EMI shields around an outer perimeter in order to shield the operational components form EMI and to components in the electronic device from EMI emanating from the operational components.