Abstract:
A multipoint touch surface controller is disclosed herein. The controller includes an integrated circuit including output circuitry for driving a capacitive multi-touch sensor and input circuitry for reading the sensor. Also disclosed herein are various noise rejection and dynamic range enhancement techniques that permit the controller to be used with various sensors in various conditions without reconfiguring hardware.
Abstract:
An ambidextrous mouse is disclosed. The ambidextrous mouse is configured for both left and right handed use. The mouse may include right handed buttons on the front side of the mouse and left handed buttons on the back side of the mouse. The user may change the handedness of the mouse by rotating the mouse about a vertical axis of the mouse such that the left hand can use the left hand buttons and the right hand can use the right hand buttons. The mouse may include a handedness selection system for configuring the mouse for right handed or left handed use even though the mouse has the capability for both right and left hands.
Abstract:
A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
Abstract:
An ambidextrous mouse is disclosed. The ambidextrous mouse is configured for both left and right handed use. The mouse may include right handed buttons on the front side of the mouse and left handed buttons on the back side of the mouse. The user may change the handedness of the mouse by rotating the mouse about a vertical axis of the mouse such that the left hand can use the left hand buttons and the right hand can use the right hand buttons. The mouse may include a handedness selection system for configuring the mouse for right handed or left handed use even though the mouse has the capability for both right and left hands.
Abstract:
A touch sensor panel configured to detect objects touching the panel as well as objects that are at a varying proximity to the touch sensor panel. The touch sensor panel includes circuitry that can configure the panel in a mutual capacitance (near field) architecture or a self-capacitance (far field and super far field) architecture. The touch sensor panel can also include circuitry that works to minimize an effect that a parasitic capacitance can have on the ability of the touch sensor panel to reliably detect touch and proximity events.
Abstract:
A haptic actuator may include a housing, at least one coil carried by the housing, and a field member having opposing first and second sides. The haptic actuator may also include a respective at least one flexure bearing mounting each of the first and second sides of the field member to be reciprocally movable within the housing responsive to the at least one coil. Each flexure bearing may include at least one flexible member having a wishbone shape with two diverging arms joined together at proximal ends and having spaced distal ends operatively coupled between adjacent portions of the field member and the housing.
Abstract:
In one exemplary embodiment, a portable computer having a display assembly coupled to a base assembly to alternate between a closed position and an open position. Palm rest areas are formed by a touchpad disposed on the surface of the base assembly. In an alternative embodiment, a touchpad disposed on the base assembly has a width that extends substantially into the palm rests areas of the base assembly.
Abstract:
A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
Abstract:
Reduction of the effects of differences in parasitic capacitances in touch screens is provided. A touch screen can include multiple display pixels with stackups that each include a first element and a second element. For example, the first element can be a common electrode, and the second element can be a data line. The display pixels can include a first display pixel including a third element connected to the first element, and the third element can contribute to a first parasitic capacitance between the first and second elements of the first display pixel, for example, by overlapping with the second element. The touch screen can also include a second display pixel lacking the third element. The second display pixel can include a second parasitic capacitance between the first and second elements of the second display pixel. The first and second parasitic capacitances can be substantially equal, for example.
Abstract:
A touch sensor panel configured to detect objects touching the panel as well as objects that are at a varying proximity to the touch sensor panel. The touch sensor panel includes circuitry that can configure the panel in a mutual capacitance (near field) architecture or a self-capacitance (far field and super far field) architecture. The touch sensor panel can also include circuitry that works to minimize an effect that a parasitic capacitance can have on the ability of the touch sensor panel to reliably detect touch and proximity events.