Abstract:
Techniques to manage notifications for state changes of eSIMs of a mobile device are described. Processing circuitry of the mobile device provides a command to the eUICC to delete an eSIM. The eUICC changes the state of the eSIM to a locked state and generates a notification of the forthcoming state change before completion of the transition to the deleted state. The processing circuitry sends the notification to a provisioning server and provides to the eUICC a response indicating successful delivery of the notification, and the eUICC subsequently transitions the eSIM to the deleted state. While the eSIM is in the locked state, applications and files of the eSIM can be unusable. In some embodiments, credentials of the eSIM can be reused to re-authenticate with a wireless network in order to deliver the notification to the provisioning server.
Abstract:
The embodiments set forth techniques for an embedded Universal Integrated Circuit Card (eUICC) to conditionally require, when performing management operations in association with electronic Subscriber Identity Modules (eSIMs), human-based authentication. The eUICC receives a request to perform a management operation in association with an eSIM. In response, the eUICC determines whether a policy being enforced by the eUICC indicates that a human-based authentication is required prior to performing the management operation. Next, the eUICC causes the mobile device to prompt a user of the mobile device to carry out the human-based authentication. The management operation is then performed or ignored in accordance with results of the human-based authentication.
Abstract:
Apparatuses, systems, and methods for a wireless device to detect intermodulation issues and configure a transmission scheme to remedy detected intermodulation issues. The wireless device may perform measurements on a downlink carrier while one uplink carrier is scheduled for the wireless device. The wireless device may also perform measurements on the downlink carrier while two uplink carriers are scheduled for the wireless device. The wireless device may provide information based on those measurements to a serving base station. The base station may determine that an intermodulation issue is occurring at the wireless device based on the information provided, and may configure the wireless device to use a single uplink carrier at a time based at least in part on the intermodulation issue.
Abstract:
Methods and apparatus for dynamic file system management of an embedded Universal Integrated Circuit Card (eUICC) in response to changes for electronic Subscriber Identity Modules (eSIMs) on the eUICC are disclosed herein. Hardware specific file information, e.g., hardware-based eUICC parameters, which may apply to multiple eSIMs and/or multiple Mobile Network Operators (MNOs), is included in a default eUICC file system. MNO specific information, e.g., MNO-specified parameters, is included in eSIMs. Customized eUICC level files are created, stored, modified and/or replaced based on a combination of default eUICC files and MNO specific information extracted from an eSIM at installation and/or in response to a change of state of the eSIM, such as when enabling, disabling, or updating the eSIM on the eUICC.
Abstract:
Methods and apparatuses for providing controlled switching of electronic access control clients (e.g., electronic Subscriber Identity Modules (eSIMs)) without requiring network access are set forth herein. In one embodiment, a method for swapping of subscriptions and/or profiles for without network supervision that prevents possibly malicious high frequency switching is disclosed. For example, a secure element included in a mobile device can be configured to issue, to a security module included in the mobile device, a request for the security module to carry out an authentication of a user of the mobile device. Upon determining, based on results received from the security module, that the authentication is successful, the secure element can generate one or more credits in accordance with the results, where each credit of the one or more credits can be used to carry out an eSIM management operation within the secure element.
Abstract:
The embodiments set forth techniques for an embedded Universal Integrated Circuit Card (eUICC) to conditionally require, when performing management operations in association with electronic Subscriber Identity Modules (eSIMs), human-based authentication. The eUICC receives a request to perform a management operation in association with an eSIM. In response, the eUICC determines whether a policy being enforced by the eUICC indicates that a human-based authentication is required prior to performing the management operation. Next, the eUICC causes the mobile device to prompt a user of the mobile device to carry out the human-based authentication. The management operation is then performed or ignored in accordance with results of the human-based authentication.
Abstract:
Methods and apparatuses for providing controlled switching of electronic access control clients without requiring network access are set forth herein. In one embodiment, a method for swapping of subscriptions and/or profiles for electronic Subscriber Identity Modules (eSIMs) without network supervision that prevents possibly malicious high frequency switching is disclosed. The disclosed embodiments offer reasonable management capabilities for network operators, without compromising the flexibility of eSIM operation.
Abstract:
Embodiments are described for identifying and accessing an electronic subscriber identity module (eSIM) and associated content of the eSIM in a multiple eSIM configuration. An embedded Universal Integrated Circuit Card (eUICC) can include multiple eSIMs, where each eSIM can include its own file structures and applications. Some embodiments include a processor of a mobile device transmitting a special command to the eUICC, including an identification that uniquely identifies an eSIM in the eUICC. After selecting the eSIM, the processor can access file structures and applications of the selected eSIM. The processor can then use existing commands to access content in the selected eSIM. The special command can direct the eUICC to activate or deactivate content associated with the selected eSIM. Other embodiments include an eUICC platform operating system interacting with eSIMs associated with logical channels to facilitate identification and access to file structures and applications of the eSIMs.
Abstract:
A policy-based framework is described. This policy-based framework may be used to specify the privileges for logical entities to perform operations associated with an access-control element (such as an electronic Subscriber Identity Module) located within a secure element in an electronic device. Note that different logical entities may have different privileges for different operations associated with the same or different access-control elements. Moreover, the policy-based framework may specify types of credentials that are used by the logical entities during authentication, so that different types of credentials may be used for different operations and/or by different logical entities. Furthermore, the policy-based framework may specify the security protocols and security levels that are used by the logical entities during authentication, so that different security protocols and security levels may be used for different operations and/or by different logical entities.
Abstract:
Apparatuses, systems, and methods for a wireless device to perform substantially concurrent communications with a next generation network node and a legacy network node. The wireless device may be configured to stablish a first wireless link with a first cell according to a RAT, where the first cell operates in a first system bandwidth and establish a second wireless link with a second cell according to a RAT, where the second cell operates in a second system bandwidth. Further, the wireless device may be configured to perform uplink activity for both the first RAT and the second RAT by TDM uplink data for the first RAT and uplink data for the second RAT if uplink activity is scheduled according to both the first RAT and the second RAT.