-
公开(公告)号:US11295491B2
公开(公告)日:2022-04-05
申请号:US16850677
申请日:2020-04-16
Applicant: Adobe Inc.
Inventor: Nupur Kumari , Piyush Gupta , Akash Rupela , Siddarth R , Balaji Krishnamurthy
Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media that generate interactive visual shape representation of digital datasets. For example, the disclosed systems can generate an augmented nearest neighbor network graph from a sampled subset of digital data points using a nearest neighbor model and witness complex model. The disclosed system can further generate a landmark network graph based on the augmented nearest neighbor network graph utilizing a plurality of random walks. The disclosed systems can also generate a loop-augmented spanning network graph based on a partition of the landmark network graph by adding community edges between communities of landmark groups based on modularity and to complete community loops. Based on the loop-augmented spanning network graph, the disclosed systems can generate an interactive visual shape representation for display on a client device.
-
公开(公告)号:US11107115B2
公开(公告)日:2021-08-31
申请号:US16057743
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
IPC: G06Q30/00 , G06Q30/02 , G06N20/00 , G05B19/418
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
13.
公开(公告)号:US11073965B2
公开(公告)日:2021-07-27
申请号:US16193475
申请日:2018-11-16
Applicant: Adobe Inc.
Inventor: Harpreet Singh , Balaji Krishnamurthy , Akash Rupela
IPC: G06F3/0482 , G06F40/197 , H04L29/08
Abstract: In some embodiments, a configuration management application accesses configuration data for a multi-target website. The configuration management application provides the user interface including a timeline area and a page display area. The timeline area is configured to display timeline entries corresponding to configurations of the multi-target website. Based on a selection of a timeline entry, the page display area is configured to display a webpage configuration corresponding to the selected timeline entry. In addition, the page display area is configured to display graphical annotations indicating interaction metrics for the configured page regions. In some cases, the timeline entries, configurations, and interaction metrics are determined based on a selection of a target segment for the multi-target website.
-
公开(公告)号:US10609434B2
公开(公告)日:2020-03-31
申请号:US16057729
申请日:2018-08-07
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/2668 , H04N21/258 , H04N21/475 , G06N20/00 , H04N21/81 , G06Q30/02
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US20200092593A1
公开(公告)日:2020-03-19
申请号:US16694612
申请日:2019-11-25
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nikaash Puri , Eshita Shah , Balaji Krishnamurthy , Nupur Kumari , Mayank Singh , Akash Rupela
IPC: H04N21/25 , H04N21/258 , G06Q30/02 , H04N21/475 , H04N21/81 , G06N20/00 , H04N21/2668
Abstract: Machine-learning based multi-step engagement strategy generation and visualization is described. Rather than rely heavily on human involvement to create delivery strategies, the described learning-based engagement system generates multi-step engagement strategies by leveraging machine-learning models trained using data describing historical user interactions with content delivered in connection with historical campaigns. Initially, the learning-based engagement system obtains data describing an entry condition and an exit condition for a campaign. Based on the entry and exit condition, the learning-based engagement system utilizes the machine-learning models to generate a multi-step engagement strategy, which describes a sequence of content deliveries that are to be served to a particular client device user (or segment of client device users). Once the multi-step engagement strategies are generated, the learning-based engagement system may also generate visualizations of the strategies that can be output for display.
-
公开(公告)号:US11989201B2
公开(公告)日:2024-05-21
申请号:US17383009
申请日:2021-07-22
Applicant: Adobe Inc.
Inventor: Akash Rupela , Piyush Gupta , Nupur Kumari , Bishal Deb , Balaji Krishnamurthy , Ankita Sarkar
IPC: G06F16/22 , G06F3/0481 , G06F16/248 , G06F16/26 , G06F16/28 , G06F18/213 , G06F18/2137
CPC classification number: G06F16/26 , G06F3/0481 , G06F16/2264 , G06F16/248 , G06F16/283 , G06F18/213 , G06F18/2137
Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
-
公开(公告)号:US20210349915A1
公开(公告)日:2021-11-11
申请号:US17383009
申请日:2021-07-22
Applicant: Adobe Inc.
Inventor: Akash Rupela , Piyush Gupta , Nupur Kumari , Bishal Deb , Balaji Krishnamurthy , Ankita Sarkar
IPC: G06F16/26 , G06F16/22 , G06F16/28 , G06F16/248 , G06F3/0481 , G06K9/62
Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
-
公开(公告)号:US11100127B2
公开(公告)日:2021-08-24
申请号:US16368415
申请日:2019-03-28
Applicant: Adobe Inc.
Inventor: Akash Rupela , Piyush Gupta , Nupur Kumari , Bishal Deb , Balaji Krishnamurthy , Ankita Sarkar
IPC: G06F16/26 , G06F16/22 , G06F16/28 , G06F16/248 , G06F3/0481 , G06K9/62
Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
-
公开(公告)号:US20200311100A1
公开(公告)日:2020-10-01
申请号:US16368415
申请日:2019-03-28
Applicant: Adobe Inc.
Inventor: Akash Rupela , Piyush Gupta , Nupur Kumari , Bishal Deb , Balaji Krishnamurthy , Ankita Sarkar
IPC: G06F16/26 , G06F16/248 , G06F16/28 , G06F16/22
Abstract: This disclosure relates to methods, non-transitory computer readable media, and systems that generate and render a varied-scale-topological construct for a multidimensional dataset to visually represent portions of the multidimensional dataset at different topological scales. In certain implementations, for example, the disclosed systems generate and combine (i) an initial topological construct for a multidimensional dataset at one scale and (ii) a local topological construct for a subset of the multidimensional dataset at another scale to form a varied-scale-topological construct. To identify a region from an initial topological construct to vary in scale, the disclosed systems can determine the relative densities of subsets of multidimensional data corresponding to regions of the initial topological construct and select one or more such regions to change in scale.
-
-
-
-
-
-
-
-