Generating synthesized digital images utilizing class-specific machine-learning models

    公开(公告)号:US11861762B2

    公开(公告)日:2024-01-02

    申请号:US17400474

    申请日:2021-08-12

    Applicant: Adobe Inc.

    CPC classification number: G06T11/00 G06T2210/12

    Abstract: This disclosure describes methods, non-transitory computer readable storage media, and systems that generate synthetized digital images using class-specific generators for objects of different classes. The disclosed system modifies a synthesized digital image by utilizing a plurality of class-specific generator neural networks to generate a plurality of synthesized objects according to object classes identified in the synthesized digital image. The disclosed system determines object classes in the synthesized digital image such as via a semantic label map corresponding to the synthesized digital image. The disclosed system selects class-specific generator neural networks corresponding to the classes of objects in the synthesized digital image. The disclosed system also generates a plurality of synthesized objects utilizing the class-specific generator neural networks based on contextual data associated with the identified objects. The disclosed system generates a modified synthesized digital image by replacing the identified objects in the synthesized digital images with the synthesized objects.

    RESTORING DEGRADED DIGITAL IMAGES THROUGH A DEEP LEARNING FRAMEWORK

    公开(公告)号:US20220392025A1

    公开(公告)日:2022-12-08

    申请号:US17338949

    申请日:2021-06-04

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately, efficiently, and flexibly restoring degraded digital images utilizing a deep learning framework for repairing local defects, correcting global imperfections, and/or enhancing depicted faces. In particular, the disclosed systems can utilize a defect detection neural network to generate a segmentation map indicating locations of local defects within a digital image. In addition, the disclosed systems can utilize an inpainting algorithm to determine pixels for inpainting the local defects to reduce their appearance. In some embodiments, the disclosed systems utilize a global correction neural network to determine and repair global imperfections. Further, the disclosed systems can enhance one or more faces depicted within a digital image utilizing a face enhancement neural network as well.

    Deep high-resolution style synthesis

    公开(公告)号:US10482639B2

    公开(公告)日:2019-11-19

    申请号:US15438147

    申请日:2017-02-21

    Applicant: Adobe Inc.

    Abstract: In some embodiments, techniques for synthesizing an image style based on a plurality of neural networks are described. A computer system selects a style image based on user input that identifies the style image. The computer system generates an image based on a generator neural network and a loss neural network. The generator neural network outputs the synthesized image based on a noise vector and the style image and is trained based on style features generated from the loss neural network. The loss neural network outputs the style features based on a training image. The training image and the style image have a same resolution. The style features are generated at different resolutions of the training image. The computer system provides the synthesized image to a user device in response to the user input.

    Transferring motion between consecutive frames to a digital image

    公开(公告)号:US10445921B1

    公开(公告)日:2019-10-15

    申请号:US16007898

    申请日:2018-06-13

    Applicant: Adobe Inc.

    Abstract: Transferring motion between consecutive frames to a digital image is leveraged in a digital medium environment. A digital image and at least a portion of the digital video are exposed to a motion transfer model. The portion of the digital video includes at least a first digital video frame and a second digital video frame that is consecutive to the first digital video frame. Flow data between the first digital video frame and the second digital image frame is extracted, and the flow data is then processed to generate motion features representing motion between the first digital video frame and the second digital video frame. The digital image is processed to generate image features of the digital image. Motion of the digital video is then transferred to the digital image by combining the motion features with the image features to generate a next digital image frame for the digital image.

    Diverse image inpainting using contrastive learning

    公开(公告)号:US12272031B2

    公开(公告)日:2025-04-08

    申请号:US17725818

    申请日:2022-04-21

    Applicant: Adobe Inc.

    Abstract: An image inpainting system is described that receives an input image that includes a masked region. From the input image, the image inpainting system generates a synthesized image that depicts an object in the masked region by selecting a first code that represents a known factor characterizing a visual appearance of the object and a second code that represents an unknown factor characterizing the visual appearance of the object apart from the known factor in latent space. The input image, the first code, and the second code are provided as input to a generative adversarial network that is trained to generate the synthesized image using contrastive losses. Different synthesized images are generated from the same input image using different combinations of first and second codes, and the synthesized images are output for display.

    GENERATIVE MODEL FOR MULTI-MODALITY OUTPUTS FROM A SINGLE INPUT

    公开(公告)号:US20240233318A9

    公开(公告)日:2024-07-11

    申请号:US17971169

    申请日:2022-10-21

    Applicant: Adobe Inc.

    CPC classification number: G06V10/70 G06N3/0454 G06T11/001 G06T15/08

    Abstract: An image generation system implements a multi-branch GAN to generate images that each express visually similar content in a different modality. A generator portion of the multi-branch GAN includes multiple branches that are each tasked with generating one of the different modalities. A discriminator portion of the multi-branch GAN includes multiple fidelity discriminators, one for each of the generator branches, and a consistency discriminator, which constrains the outputs generated by the different generator branches to appear visually similar to one another. During training, outputs from each of the fidelity discriminators and the consistency discriminator are used to compute a non-saturating GAN loss. The non-saturating GAN loss is used to refine parameters of the multi-branch GAN during training until model convergence. The trained multi-branch GAN generates multiple images from a single input, where each of the multiple images depicts visually similar content expressed in a different modality.

Patent Agency Ranking