摘要:
Various methods of inspecting a film on a semiconductor workpiece for a residue are provided. In one aspect, a method of inspecting a film on a semiconductor workpiece wherein the film has a known infrared signature is provided. The method includes heating the workpiece so that the film emits infrared radiation and sensing the infrared radiation emitted from the film. The infrared signature of the radiation emitted from the film is compared with the known infrared signature and a signal indicative of a deviation between the infrared signature of the emitted infrared radiation and the known infrared signature is generated. The method enables the rapid and accurate detection of residues, such as oxide residues on nitride films.
摘要:
A polishing pad having a cross-sectional open area which varies with depth from the pad surface is provided. The cross-sectional open area of the pad may increase and/or decrease moving away from the outer pad surface. In some cases, the cross-sectional open area of the pad varies uniformly with depth over the entire pad. In other cases, certain regions of the pad may define local cross-sectional open areas which vary differently. This can, for example, allow the open area of the pad to vary with pad life and improve or tailor the polishing uniformity of the pad and/or extend the useful life of the pad.
摘要:
A method of controlling surface non-uniformity of a process layer includes receiving a first lot of wafers, and polishing a process layer of the first lot of wafers. A control variable of the polishing operations is measured after the polishing is performed on the process layer. A first adjustment input for an arm oscillation length of a polishing tool is determined based on the measurement of the control variable. A process layer of a second lot of wafers is polished using the adjustment input for the arm oscillation length. A controller for controlling surface non-uniformity of a process layer includes an optimizer and an interface. The optimizer is adapted to determine a first adjustment input for arm oscillation length of a polishing tool based on a measurement of a control variable from a first lot of wafers. The interface is adapted to provide the first adjustment input to the polishing tool for polishing a second lot of wafers.
摘要:
A method for measuring the planarization efficiency of a planarization process and a device for use with the method are provided. The device may be a substrate having a set of isolated features, such as trenches or hills, with different widths. In the method, a removable layer of material is formed over the substrate. The substrate features form corresponding features in the removable layer with varying dimensions. A pre-planarization thickness of the removable layer of material is measured at each feature and at one or more of isolation areas. The removable layer of material is then planarized using a planarization process associated with one or more process parameters. A post-planarization thickness of the removable is measured at each feature and at one or more of the isolation regions. The planarization efficiency of the planarization process is then determined as a function of the dimensions of the substrate features or corresponding features in the removable layers and/or one or more process parameters. The determined planarization efficiency may be output by, for example, generating a graph of the planarization efficiency or using the planarization efficiency to change one or more parameters of the planarization process.