Abstract:
Technology generally directed to operation of loading dock equipment such as vehicle restraints, dock levelers, overhead doors/openers, barrier gates, lights, and linked or unlinked control systems is disclosed herein. The disclosed technology may be employed to power electrical loading dock systems from batteries and/or alternative power sources, including “green” power sources. For example, the technology may be employed at new, temporary, and/or mobile facilities having any number of loading docks where reliable commercial power may not be readily available. Further, the technology may also be employed at warehouses in remote and/or developing areas where electrical infrastructure is not available and/or reasonably priced. The technology may be embodied as methods, apparatuses, manufactures (e.g., computer- and/or processor-readable storage and/or other mediums), and/or the like.
Abstract:
In one embodiment, a method includes identifying a plurality of network elements for reinitiation, wherein the network elements are operative to manage at least one child element; selecting a first network element from the plurality of network elements, transmitting a disable message to the first network element; determining whether the at least one child element has migrated to one or more alternate network elements; and conditionally transmitting a reinitiation message to the first network element.
Abstract:
Described in an example embodiment herein is a Mobility Service Engine (MSE) cluster comprising an MSE Cluster Master and at least one MSE Cluster Slave. The MSE Master is configured to define Network Service Segments. The MSE Master of the cluster distributes the Network Service Segments to slaves within the cluster. The network is configured to forward data to the correct Network Service Segment.
Abstract:
In one embodiment, a method includes storing, in a data store, a physical network model of a network environment, the network environment comprising one or more central controllers and one or more access points each operative to associate with a central controller, the physical network model comprising one or more region objects, each region object corresponding to a physical region of the network environment, each region object further including one or more radio frequency (RF) coverage maps, each RF coverage map defining a location of one or more access points and RF properties of a physical space; receiving a first mapping definition between a location server and a one or more region objects of the physical network model; receiving a second mapping definition between the location server and one or more central controllers; transmitting the one or more region objects in the first mapping definition to the location server; and configuring the location server and the one or more central controllers in the second mapping definition to interoperate.
Abstract:
A Method of Determining the Helix Angle of a Helical Formation for a Conduit. A method of determining the helix angle of a helical formation (4) within a conduit (1). The method includes specifying the internal dimensions of the conduit (1) and an intended fluid mass flow through the conduit (1). The helix angle is determined from the pressure drop and the turbulent kinetic energy for a conduit (1) having the specified internal dimensions and intended fluid mass flow.
Abstract:
In one embodiment, a method includes identifying a plurality of network elements for reinitiation, wherein the network elements are operative to manage at least one child element; selecting a first network element from the plurality of network elements, transmitting a disable message to the first network element; determining whether the at least one child element has migrated to one or more alternate network elements; and conditionally transmitting a reinitiation message to the first network element.
Abstract:
A device whose location is to be determined (target device) generates a plurality of frames (messages) and time of departure (TOD) timestamp information indicating when the target device transmits the plurality of frames in a sequence or burst. The target device transmits the plurality of frames and the TOD information, wherein the plurality of frames are transmitted such that at least two of the frames are on different radio frequency (RF) channels. Within a sequence or burst (or across multiple sequences or bursts), multiple widely spaced transmissions on the same channel are included to allow for estimation of the crystal frequency offset of the transmitting device. The TOD information included in the transmitted packets allows devices that receive the packets not to change their channels of operation solely for the purpose of receiving packets from the device to be located.
Abstract:
In one embodiment, wireless access point management is optimized. The data bandwidth and/or processing requirements for data indicating operation of the access point is baselined. For example, air quality or interference measurements are made at the access point on a regular basis. The interference measurements over one or more periods, such as one period of 24 hours, provide a baseline. Rather than transmitting and processing the subsequent measurements that are normal or within the baseline, a lack of information or data requiring less bandwidth than the measurements communicates to a controller or server that the measurements are normal or within the baseline.
Abstract:
Described in an example embodiment herein is a Mobility Service Engine (MSE) cluster comprising an MSE Cluster Master and at least one MSE Cluster Slave. The MSE Master is configured to define Network Service Segments. The MSE Master of the cluster distributes the Network Service Segments to slaves within the cluster. The network is configured to forward data to the correct Network Service Segment.
Abstract:
In one embodiment, a device with a wireless transceiver and a network interface, such as a wireless location determination device or a laptop with wireless capability and an Ethernet port, is coupled to a network switch port via the network interface. A request for location data is sent via the wireless transceiver, and location data is provided to the wireless transceiver, enabling the location of the Ethernet outlet to which the switch port is connected to be determined.