Abstract:
Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments are methods including causing a submerged geophysical survey cable to surface. The cause may include: moving a piston within a cylinder of a housing coupled to the geophysical survey cable, the moving of the piston responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth, wherein the movement of the piston overcomes a force created by interaction between two materials, the force latches the piston in place at depths above the predetermined depth; and responsive to the piston overcoming the force that latches the piston deploying a mechanism that makes the geophysical survey cable more positively buoyant, the deploying responsive to movement of the piston.
Abstract:
A marine seismic streamer includes a jacket substantially covering an exterior of the streamer. At least one strength member is disposed along the length of the jacket. A sensor mount is coupled to the strength member. At least one particle motion sensor is suspended within the sensor mount at a selected location along the jacket. The at least one particle motion sensor is suspended in the jacket by at least one biasing device. A mass of the particle motion sensor and a force rate of the biasing device are selected such that a resonant frequency of the particle motion sensor within the sensor jacket is within a predetermined range. The sensor mount is configured such that motion of the jacket, the sensor mount and the strength member is substantially isolated from the particle motion sensor.
Abstract:
A seismic streamer includes at least one elongated strength member. The seismic streamer further includes a substantially rigid sensor holder coupled to the strength member and fixed in position relative to the strength member. The streamer includes at least one particle motion sensor coupled to the sensor holder and fixed in position relative to the sensor holder.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the streamer and is disposed inside the jacket. At least one seismic sensor is disposed in a sensor spacer affixed to the at least one strength member. An encapsulant is disposed between the sensor and the sensor spacer. The encapsulant is a substantially solid material that is soluble upon contact with a void filling material. A void filling material is disposed in the interior of the jacket and fills substantially all void space therein. The void filling material is introduced to the interior of the jacket in liquid form and undergoing state change to substantially solid thereafter.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the jacket, and is disposed inside the jacket. At least one seismic sensor is disposed is mounted in a respective sensor spacer affixed to the at least one strength member. The streamer include means for retaining the at least one sensor in the respective sensor spacer. The means for retaining provides acoustic isolation between the at least one sensor and the respective spacer.
Abstract:
A marine geophysical survey cable retriever system. At least some of the illustrative embodiments are methods including causing a submerged survey cable to surface. In some cases, causing the submerged survey cable to surface includes: shedding ballast weights when the survey cable reaches or exceeds a first predetermined depth; and inflating a lifting bag when the survey cable reaches or exceeds a second predetermined depth.
Abstract:
Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments are methods including causing a submerged geophysical survey cable to surface. The cause may include: moving a piston within a cylinder of a housing coupled to the geophysical survey cable, the moving of the piston responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth, wherein the movement of the piston overcomes a force created by interaction between two materials, the force latches the piston in place at depths above the predetermined depth; and responsive to the piston overcoming the force that latches the piston deploying a mechanism that makes the geophysical survey cable more positively buoyant, the deploying responsive to movement of the piston.
Abstract:
A marine seismic streamer includes a jacket substantially covering an exterior of the streamer. At least one strength member is disposed along the length of the jacket. A sensor mount is coupled to the strength member. At least one particle motion sensor is suspended within the sensor mount at a selected location along the jacket. The at least one particle motion sensor is suspended in the jacket by at least one biasing device. A mass of the particle motion sensor and a force rate of the biasing device are selected such that a resonant frequency of the particle motion sensor within the sensor jacket is within a predetermined range. The sensor mount is configured such that motion of the jacket, the sensor mount and the strength member is substantially isolated from the particle motion sensor.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the jacket inside the jacket. At least one seismic sensor is disposed inside the jacket. The seismic sensor is disposed in a mount. The mount defines a sealed, liquid filled chamber inside the jacket. A material fills the void spaces inside the jacket and outside the chamber. The material is introduced to the void spaces in liquid form and cures to a gel thereafter.
Abstract:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of the jacket. The strength member is disposed inside the jacket. Seismic sensors are disposed at spaced apart locations along the interior of the jacket. An acoustically transparent material fills the space inside the jacket. The material is introduced into the inside of the jacket in liquid form and undergoes a state change upon exposure to radiation. The radiation in one embodiment is ultraviolet radiation. The radiation in one embodiment is electron beam radiation.