摘要:
Methods and systems for computing notional source signatures from modeled notional signatures and measured near-field signatures are described. Modeled near-field signatures are calculated from the modeled notional signatures. Low weights are assigned to parts of a source pressure wavefield spectrum where signatures are less reliable and higher weights are assigned to parts of the source pressure wavefield spectrum where signatures are more reliable. The part of the spectrum where both sets of signatures are reliable can be used for quality control and for comparing the measured near-field signatures to modeled near-field signatures. When there are uncertainties in the input parameters to the modeling, the input parameters can be scaled to minimize the differences between measured and modeled near-field signatures. Resultant near-field signatures are computed by a weighted summation of the modeled and measured near-field signatures, and notional source signatures are calculated from the resultant near-field signatures.
摘要:
A seismic streamer includes at least one array of sensors each disposed in a sensor holder at longitudinally spaced apart locations. A longitudinal orientation of at least one sensor or at least one sensor holder is different from that of the other sensors along the length of the array.
摘要:
A system comprises a plurality of seismic transmitters, at least one seismic source array, and a processor. Each seismic source array comprises a plurality of seismic source-array elements, mounted within the seismic source array; and a plurality of near-field sensors, wherein each near-field sensor is mounted within the seismic source array in the vicinity of one of the seismic source-array elements. The processor is adapted to determine relative positions of the seismic source-array elements on the seismic source array from the seismic signals transmitted by the seismic transmitters and received at the near-field sensors on the seismic source array.
摘要:
Techniques are disclosed relating to determining or executing a survey pattern for a marine seismic survey vessel. The survey pattern may be determined based on a determined subsurface illumination area. The subsurface illumination area may be identifiable from primary reflections and higher-order reflections detected by sensors disposed in a sensor streamer configuration that may be towed behind the survey vessel. The sensor streamer configuration may include a plurality of streamers.
摘要:
In a first embodiment the invention comprises a method for gathering geophysical data, including towing geophysical data gathering equipment behind a survey vessel in a body of water, said equipment including an array of sensor streamers extending behind said vessel, and determining a geodetic location of a streamer steering reference point at a forward end of the sensor streamers and a reference direction. At least one sensor streamer included in said array of sensor streamers is laterally deflected in response to the determined geodetic location of said streamer steering reference point and the determined reference direction.
摘要:
Techniques are disclosed relating to determining or executing a survey pattern for a marine seismic survey vessel. The survey pattern may be determined based on a determined subsurface illumination area. The subsurface illumination area may be identifiable from primary reflections and higher-order reflections detected by sensors disposed in a sensor streamer configuration that may be towed behind the survey vessel. The sensor streamer configuration may include a plurality of streamers.
摘要:
A seismic streamer includes a jacket covering an exterior of the streamer. At least one strength member extends along the length of and disposed inside the jacket. At least one seismic sensor is mounted in a housing affixed to the at least one strength member. A void filling material fills the interstices inside the jacket. The housing is configured to isolate the at least one sensor from pressure variations in the void filling material, and the housing is configured to couple the at least one sensor to a body of water outside the streamer.
摘要:
The invention comprises a system for attenuating noise in seismic signals detected in a marine seismic streamer. In a particular implementation the system may comprise seismic detectors positioned in the streamer and interconnected to form a plurality of wavenumber filters, with each of the wavenumber filters attenuating signals within a range of wavenumbers. The output signals from the wavenumber filters are operatively connected to a plurality of band-pass filters, and the output signals of the band-pass filters are combined by summation means. The range of wavenumbers attenuated by the wavenumber filters and the passbands of the band-pass filters are selected so that in the output signal of the summation means, signals within a selected frequency range of interest propagating along the cable within a selected velocity range are attenuated and signals within the selected frequency range of interest having a velocity range outside the selected velocity range are preserved.
摘要:
A system comprises a plurality of seismic transmitters, at least one seismic source array, and a processor. Each seismic source array comprises a plurality of seismic source-array elements, mounted within the seismic source array; and a plurality of near-field sensors, wherein each near-field sensor is mounted within the seismic source array in the vicinity of one of the seismic source-array elements. The processor is adapted to determine relative positions of the seismic source-array elements on the seismic source array from the seismic signals transmitted by the seismic transmitters and received at the near-field sensors on the seismic source array.
摘要:
A disclosed subsurface imaging method begins by obtaining initial signals from a geophysical survey that has been acquired with multiple geophysical energy sources actuated in a plurality of firing sequences, each sequence having a known time delay between the firing times of each source. The initial signals are grouped into gathers of signals acquired from multiple firing sequences. For each gather, initial estimates of the first and second source wave fields are determined. Quieted signals for the first source are then generated to represent the initial signals minus a current estimate of the second source wave field. A coherent energy separation operation is applied to the quieted signals to obtain a refined estimate for the first source wave field.