Abstract:
A swelling element packer is made with internal rings that are either split or scrolled. After the swelling element is built on a temporary mandrel a longitudinal seam of a variety of designs is cut through the element. This allows the rapid deployment of the element on the tubular that will be a part of a string and will serve as the final mandrel. The assembly is then magnetic pulse welded or crimped so as to urge the open ends of the rings to move toward each other and become secured to each other and further opening the possibility of attaching parts on the ring itself to the underlying tubular by displacing or otherwise removing the swelling material that was between the ring and the final mandrel when the magnetic pulse process began. The rings can be embedded wholly within the element or can extend beyond the opposed ends or combinations of the two.
Abstract:
A variable bore ram packer including a ram body, a top seal and a packer member designed for use in a standard ram-type blowout preventer used in oil and gas drilling operations is disclosed. The packer member is molded of an elastomeric material having a central semi-elliptical opening with a plurality of packer inserts molded within the elastomeric material in a semi-circular pattern around the central semi-elliptical opening of the elastomeric material. The semi-circular pattern of the packer inserts and the semi-elliptical opening of the elastomeric material share a common axis. The packer member and the plurality of packer inserts are molded into a unitary structure allowing the plurality of packer inserts to move and seat against different diameter tubular members to prevent extrusion of the elastomeric material between the packer inserts and the tubular member.
Abstract:
A swelling element on a packer has a trough formed on a longitudinal axis. The control line or cable or conduit that needs to run along the string where the packer is mounted is first wrapped in a preferably non-swelling underlayment that can be a loose scroll or have its seam sealed. A swelling cover is placed over the underlayment using a seam that can be longitudinal or spiral to allow rapid deployment. The covering assembly for the control line or conduit is placed in the slot of the swelling element of the packer. The line or cable continues out opposed ends and can be secured to the tubular string with clamps. The control line can be covered with a swelling material and forced into a groove that runs the length of the packer swelling element.
Abstract:
A swelling packer is covered with a material that is preferably in a tubular form and slipped over the swelling element to be shrink fit with applied heat. The material is formulated to break down at temperatures slightly below the expected downhole temperatures so that ideally the packer has about 48 hours of swelling delay which is normally a time period long enough to allow it to be properly located without it swelling so much as to cause it to be damaged by running in. Various polymers can be used to make an imperious covering for run in that on the way starts to break down. Ideally the material for the cover disappears about the time of sealing or shortly thereafter.
Abstract:
A swelling element on a packer has a trough formed on a longitudinal axis. The control line or cable or conduit that needs to run along the string where the packer is mounted is first wrapped in a preferably non-swelling underlayment that can be a loose scroll or have its seam sealed. A swelling cover is placed over the underlayment using a seam that can be longitudinal or spiral to allow rapid deployment. The covering assembly for the control line or conduit is placed in the slot of the swelling element of the packer. The line or cable continues out opposed ends and can be secured to the tubular string with clamps. The control line can also be covered with a swelling material and forced into a groove that runs the length of the packer swelling element.
Abstract:
A swelling element on a packer has a trough formed on a longitudinal axis. The control line or cable or conduit that needs to run along the string where the packer is mounted is first wrapped in a preferably non-swelling underlayment that can be a loose scroll or have its seam sealed. A swelling cover is placed over the underlayment using a seam that can be longitudinal or spiral to allow rapid deployment. The covering assembly for the control line or conduit is placed in the slot of the swelling element of the packer. The line or cable continues out opposed ends and can be secured to the tubular string with clamps. In an alternative embodiment the control line is covered with a swelling material and forced into a groove that runs the length of the packer swelling element.
Abstract:
A swelling packer is covered with a material that is preferably in a tubular form and slipped over the swelling element to be shrink fit with applied heat. The material is formulated to break down at temperatures slightly below the expected downhole temperatures so that ideally the packer has about 48 hours of swelling delay which is normally a time period long enough to allow it to be properly located without it swelling so much as to cause it to be damaged by running in. Various polymers can be used to make an imperious covering for run in that on the way starts to break down. Ideally the material for the cover disappears about the time of sealing or shortly thereafter.
Abstract:
A method and assembly for reducing a radial gap between radially proximate components including a setting member having a first dimension that partially defines the radial gap, the setting member including a circumferential groove extending radially from the first dimension, and a first toroid having a second dimension, the setting member operatively arranged to engage with the first toroid, wherein increasingly engaging the setting member with the first toroid enables a boundary dimension of the assembly to be extended toward the radial gap for reducing the radial gap, the circumferential groove operatively arranged to catch the first toroid when the setting member is fully engaged with the first toroid.
Abstract:
A swelling element on a packer has a trough formed on a longitudinal axis. The control line or cable or conduit that needs to run along the string where the packer is mounted is first wrapped in a preferably non-swelling underlayment that can be a loose scroll or have its seam sealed. A swelling cover is placed over the underlayment using a seam that can be longitudinal or spiral to allow rapid deployment. The covering assembly for the control line or conduit is placed in the slot of the swelling element of the packer. The line or cable continues out opposed ends and can be secured to the tubular string with clamps. The control line can be covered with a swelling material and forced into a groove that runs the length of the packer swelling element.
Abstract:
A swelling element on a packer has a trough formed on a longitudinal axis. The control line or cable or conduit that needs to run along the string where the packer is mounted is first wrapped in a preferably non-swelling underlayment that can be a loose scroll or have its seam sealed. A swelling cover is placed over the underlayment using a seam that can be longitudinal or spiral to allow rapid deployment. The covering assembly for the control line or conduit is placed in the slot of the swelling element of the packer. The line or cable continues out opposed ends and can be secured to the tubular string with clamps. In an alternative embodiment the control line is covered with a swelling material and forced into a groove that runs the length of the packer swelling element.