Abstract:
In a method for improving signal extraction in a code division multiple access (CDMA) telecommunications system, a first iteration of interference cancellation is performed on the basis of bit rates for every signal which are the same as those in a previous frame of the same signal. Filtered and down-converted signals are demodulated in Rake receivers to provide output signals corresponding to decision variables and channel estimates. The decision variables are limited and remodulated and respread prior to the signals being reconstructed using the channel estimates. The reconstructed signals are summed, and each signal is subtracted from the sum to provide an ‘interference’ signal which is then used to obtain the individual signals. Each signal is then demodulated a second time in another Rake receiver to provide a tentative DPDCH signal, a TFI signal, a TPC signal and a SNI signal. The TFI signal is processed to provide a signal indicative of the bit rate which is used to both decode the DPDCH signal providing a data output and to provide an estimate of the bit rate for a subsequent frame of the same signal.
Abstract:
The apparatus includes circuitry for determining which base station a mobile unit should be affiliated to for best reception, and circuitry for maintaining affiliation with the base station to which the mobile is currently connected. Cancellation circuitry is provided for cancelling the interference caused as a result of the mobile unit being affiliated to the base station giving non-optimum reception.
Abstract:
For a Rake receiver in which the received signal is sampled at only one sample per chip, the signal is energy collected from several multipath components by the Rake fingers. If any multipath component is not perfectly aligned with the sampling time, several Rake fingers will be needed to collect its energy. If the number of Rake fingers available is limited, then more efficient collection of energy is possible if fine timing correction is applied to the sampling so that optimum sampling is applied to the strongest multipath component. In this way, only one Rake finger is required and the other Rake fingers may be dedicated to the remaining multipath components. The present invention uses two types of control methods, a Tau dither phase control circuit or a pilot jitter clock circuit. The control circuit generates control signals for the various Rake fingers and also controls a clock phase adjuster which in turn controls a sample and hold circuit which receives the analog complex baseband input signal which is fed via an analog-to-digital converter into a complex shift register, each stage of which is connected to each Rake finger and is selectable by each Rake finger.
Abstract:
A method for calibration of a magnetic resonance imaging system having a bore, a body coil mounted in the bore, a patient mat, a number of local coils mounted in the patient mat, an upconversion stage having a number of upconverters, and a processing stage, includes the steps of generating a calibration signal in the body coil; receiving the calibration signal at the local coils, upconverting the signal from the local coils in the upconversion stage, transmitting the upconverted signal to the processing stage, synchronously downconverting the signal in the processing stage using the calibration signal generated in the body coil, and processing the downconverted signal to generate an overall path complex gain.
Abstract:
An upconverter has a low noise amplifier, a two port mixer and an antenna. The two port mixer comprises a first port to receive from the low noise amplifier an amplified input signal to be upconverted and a second port to receive a local oscillator signal and to output the amplified, upconverted signal at upper and lower sideband frequencies. The low noise amplifier is coupled to the first port; and the antenna is coupled to the second port.
Abstract:
A method of maintaining a communication link between a network node and a mobile node of a communications network comprises providing at least two downlink transmission beams (A to D) and designating a first of the at least two beams as a primary transmission beam (e.g. B). The beams are used in accordance with a schedule. Received signal quality or signal strength measurements are taken at the mobile node and signaled to the network node. A quality of link on the primary transmission beam (e.g. B) and at least one other of the at least two transmission beams (e.g. A, C) is determined from the measurements signaled from the mobile node to the network node and the quality of link for the beams is compared to provide a comparison and the schedule varied in accordance with the comparison.
Abstract:
The apparatus transmits in a first zone, for example, an aircraft, a masking signal which masks transmissions from a second zone outside of the first. By doing this a mobile cellular telephone is inhibited from connecting or attempting to connect to base-stations on the ground. A hole in the masking signal spectrum may be provided to enable connection to a base-station within the aircraft. Alternatively, a base-station within the aircraft may be arranged to transmit at a power level greater than the masking signal.
Abstract:
A method of controlling interference from a transmitter (4) in one communication system to a receiver (1) in another communication system, the method comprising transmitting a beacon (3) beacon from a beacon transmitter associated with the receiver representative of a frequency at which the receiver is trying to receive; listening for the beacon at a beacon receiver associated with the transmitter; and deriving a power spectral density limit for a transmission (2) from the transmitter based upon the strength of the beacon received at the beacon receiver.
Abstract:
When transmitting bursty data, for example packet data, a mobile terminal uses information relating to signal strength at the base station to determine the power at which the mobile terminal must transmit in order to produce a required signal to noise ratio at the base station. In frequency division duplex techniques, multi-path fading on the down-link is uncorrelated with multi-path fading on the up-link. Power measurements can be averaged at the mobile terminal over a likely fading period. However, this does not cater for instantaneous power level fluctuations in the up-link direction, which can result in the power transmitted by the mobile terminal being too high or too low at the start of a frame. The invention maintains a predetermined signal to noise ratio. At a given time slot, a power level is determined which, over remaining time slots, is based on the sum of power levels corresponding to previous time slots and the number of time slots remaining in the frame. Where multi-path fading occurs, smaller variations in average power over the frame will occur leading to improved system capacity.
Abstract:
A mobile phone antenna comprising a belt which is adapted to be worn by a user and which comprises an antenna arrangement which in use is coupled to the mobile phone transceiver.