Abstract:
A method for calibration of a magnetic resonance imaging system having a bore, a body coil mounted in the bore, a patient mat, a number of local coils mounted in the patient mat, an upconversion stage having a number of upconverters, and a processing stage, includes the steps of generating a calibration signal in the body coil; receiving the calibration signal at the local coils, upconverting the signal from the local coils in the upconversion stage, transmitting the upconverted signal to the processing stage, synchronously downconverting the signal in the processing stage using the calibration signal generated in the body coil, and processing the downconverted signal to generate an overall path complex gain.
Abstract:
A method of controlling interference between communication terminals involves sending a notification of a desire to transmit a transmission over a wireless network from a first terminal; determining whether any terminal in the process of receiving has sent an objection in response to the notification; sending the transmission if no objection is received, and modifying the transmission if an objection is received.
Abstract:
A method of maintaining a communication link between a network node and a mobile node of a communications network comprises providing at least two downlink transmission beams (A to D) and designating a first of the at least two beams as a primary transmission beam (e.g. B). The beams are used in accordance with a schedule. Received signal quality or signal strength measurements are taken at the mobile node and signaled to the network node. A quality of link on the primary transmission beam (e.g. B) and at least one other of the at least two transmission beams (e.g. A, C) is determined from the measurements signalled from the mobile node to the network node and the quality of link for the beams is compared to provide a comparison and the schedule varied in accordance with the comparison.
Abstract:
Described herein is a method of providing synchronization between a plurality of base stations (300) in a telecommunications system which comprises providing a random access channel in each cell (320). A local base station (300) uses the random access channel in the local cell to transmit a synchronization signal to neighboring base stations. For each base station, the time differences between received synchronization signals from neighboring base stations and the local synchronization signal are calculated. Each set of time differences is either used to autonomously synchronize the local base station or is centralized in a radio network controller and a set of corrections distributed from the RNC to the base stations.
Abstract:
Conventional Rake receivers for spread spectrum signals are typically restricted in the number of multipath components they can usefully combine. The present apparatus for combines all the useful multipatlh components in a received signal with modest complexity. Digital correlators are provided over the multipath delay spread of the signal at predetermined intervals and their outputs are maximal ratio combined. With close to rectangular transmission received filters, almost all the entire signal energy can be recovered at the output of the combiner even though no attempt is made to accurately to align any of the correlators onto a specific multipath component.
Abstract:
There is described a method of transmitting an ultra wideband (UWB) signal. The method comprises, inputting an information signal, generating a pseudo random time hopping code; generating a pulse inversion code and using the pseudo random time hopping code, pulse inversion code and information signal to generate the UWB signal. The time hopping code is used to modulate pulses of the signal in a pseudo random manner in order to channelise the signal whilst the pulse inversion code is used to provide additional modulation to pulses of the signal in order to further randomise the signal.
Abstract:
A magnetic resonance imaging system upconverter stage has a number of local coils and a number of upconverters to receive a signal from an output of each coil. Each upconverter has a number of two port upconverter cores, each core having a first port to receive a signal from a local coil and a second port to output an upconverted signal at upper and lower sideband frequencies through an antenna coupled to the second port. The inputs of the plurality of upconverter cores are connected in parallel, and at least one antenna is associated with the second port of each core.
Abstract:
An upconverter has a low noise amplifier, a two port mixer and an antenna. The two port mixer comprises a first port to receive from the low noise amplifier an amplified input signal to be upconverted and a second port to receive a local oscillator signal and to output the amplified, upconverted signal at upper and lower sideband frequencies. The low noise amplifier is coupled to the first port; and the antenna is coupled to the second port.
Abstract:
A wireless magnetic resonance imaging scanner has one or more local coils, a microwave antenna array, and a local oscillator, and an upconverter. The local oscillator signal from the local oscillator is transmitted from the microwave antenna array to illuminate the local coils. The local coils generate magnetic resonance signals at a first frequency and the magnetic resonance signals at the first frequency are upconverted in the upconverter to microwave frequencies. The local oscillator operates at a frequency within an unlicensed band, chosen such that desired sidebands for reception of the upconverted local coil magnetic resonance signals fall outside the unlicensed band.
Abstract:
An upconversion stage for a wireless magnetic resonance imaging system local coil array has a number of upconversion circuits. Each upconversion circuit includes a parametric amplifier, an antenna and a delay line between the amplifier and the antenna. The path length of the delay line in one upconversion circuit differs from the path length of the delay line in an adjacent upconversion circuit by a predetermined amount.