Abstract:
This disclosure relates to techniques for the robust usage of semantic segmentation information in image processing techniques, e.g., shallow depth of field (SDOF) renderings. Semantic segmentation may be defined as a process of creating a mask over an image, wherein pixels are segmented into a predefined set of semantic classes. Segmentations may be binary (e.g., a ‘person pixel’ or a ‘non-person pixel’) or multi-class (e.g., a pixel may be labelled as: ‘person,’ ‘dog,’ ‘cat,’ etc.). As semantic segmentation techniques grow in accuracy and adoption, it is becoming increasingly important to develop methods of utilizing such segmentations and developing flexible techniques for integrating segmentation information into existing computer vision applications, such as synthetic SDOF renderings, to yield improved results in a wide range of image capture scenarios. In some embodiments, a refinement operation may be employed on a camera device's initial depth, disparity and/or blur estimates that leverages semantic segmentation information.
Abstract:
The disclosure pertains to techniques for image processing. One such technique comprises a method for image processing comprising obtaining first light information from a set of light-sensitive pixels for a scene, the pixels including phase detection (PD) pixels and non-PD pixels, generating a first PD pixel image from the first light information, the first PD pixel image having a first resolution, generating a higher resolution image from the plurality of non-PD pixels, wherein the higher resolution image has a resolution greater than the resolution of the first PD pixel image, matching a first pixel of the first PD pixel image to the higher resolution image, wherein the matching is based on a set of correlations between the first pixel and non-PD pixel within a predetermined distance of the first pixel, and determining a disparity map for an image associated with the first light information, based on the match.
Abstract:
Generating an image with a selected level of background blur includes capturing, by a first image capture device, a plurality of frames of a scene, wherein each of the plurality of frames has a different focus depth, obtaining a depth map of the scene, determining a target object and a background in the scene based on the depth map, determining a goal blur for the background, and selecting, for each pixel in an output image, a corresponding pixel from the focus stack.
Abstract:
Generating a focus stack, including receiving initial focus data that identifies a plurality of target depths, positioning a lens at a first position to capture a first image at a first target depth of the plurality of target depths, determining, in response to capturing the first image and prior to capturing additional images, a sharpness metric for the first image, capturing, in response to determining that the sharpness metric for the first image is an unacceptable value, a second image at a second position based on the sharpness metric, wherein the second position is not included in the plurality of target depths, determining that a sharpness metric for the second image is an acceptable value, and generating a focus stack using the second image.