Abstract:
Generating an image with a selected level of background blur includes capturing, by a first image capture device, a plurality of frames of a scene, wherein each of the plurality of frames has a different focus depth, obtaining a depth map of the scene, determining a target object and a background in the scene based on the depth map, determining a goal blur for the background, and selecting, for each pixel in an output image, a corresponding pixel from the focus stack.
Abstract:
Systems, methods, and computer-readable media to improve multi-image color-refinement operations are disclosed for refining color differences between images in a multi-image camera system with application to disparity estimation. Recognizing that corresponding pixels between two (or more) images of a scene should have not only the same spatial location, but the same color, can be used to improve the spatial alignment of two (or more) such images and the generation of improved disparity maps. After making an initial disparity estimation and using it to align the images, colors in one image may be refined toward that of another image. (The image being color corrected may be either the reference image or the image(s) being registered with the reference image.) Repeating this process in an iterative manner allows improved spatial alignment between the images and the generation of superior disparity maps between the two (or more) images.
Abstract:
Camera calibration includes capturing a first image of an object by a first camera, determining spatial parameters between the first camera and the object using the first image, obtaining a first estimate for an optical center, iteratively calculating a best set of optical characteristics and test setup parameters based on the first estimate for the optical center until the difference in a most recent calculated set of optical characteristics and previously calculated set of optical characteristics satisfies a predetermined threshold, and calibrating the first camera based on the best set of optical characteristics. Multi-camera system calibration may include calibrating, based on a detected misalignment of features in multiple images, the multi-camera system using a context of the multi-camera system and one or more prior stored contexts.
Abstract:
Systems, methods, and computer-readable media to improve multi-image color-refinement operations are disclosed for refining color differences between images in a multi-image camera system with application to disparity estimation. Recognizing that corresponding pixels between two (or more) images of a scene should have not only the same spatial location, but the same color, can be used to improve the spatial alignment of two (or more) such images and the generation of improved disparity maps. After making an initial disparity estimation and using it to align the images, colors in one image may be refined toward that of another image. (The image being color corrected may be either the reference image or the image(s) being registered with the reference image.) Repeating this process in an iterative manner allows improved spatial alignment between the images and the generation of superior disparity maps between the two (or more) images.
Abstract:
Generating an image with a selected level of background blur includes capturing, by a first image capture device, a plurality of frames of a scene, wherein each of the plurality of frames has a different focus depth, obtaining a depth map of the scene, determining a target object and a background in the scene based on the depth map, determining a goal blur for the background, and selecting, for each pixel in an output image, a corresponding pixel from the focus stack.
Abstract:
Generating a focus stack, including receiving initial focus data that identifies a plurality of target depths, positioning a lens at a first position to capture a first image at a first target depth of the plurality of target depths, determining, in response to capturing the first image and prior to capturing additional images, a sharpness metric for the first image, capturing, in response to determining that the sharpness metric for the first image is an unacceptable value, a second image at a second position based on the sharpness metric, wherein the second position is not included in the plurality of target depths, determining that a sharpness metric for the second image is an acceptable value, and generating a focus stack using the second image.
Abstract:
A method for generating a depth map is described. The method includes obtaining a first image of a scene from a first image capture unit, the first image having a first depth-of-field (DOF), obtaining a second image of the scene from a second image capture unit, the second image having a second DOF that is different than the first DOF. Each pixel in the second image has a corresponding pixel in the first image. The method also includes generating a plurality of third images, each corresponding to a blurred version of the second image at each of a plurality of specified depths, generating a plurality of fourth images, each representing a difference between the first image and one or the plurality of third images, and generating a depth map where each pixel in the depth map is based on the pixels in one of the plurality of fourth images.
Abstract:
A method for generating a depth map is described. The method includes obtaining a first image of a scene from a first image capture unit, the first image having a first depth-of-field (DOF), obtaining a second image of the scene from a second image capture unit, the second image having a second DOF that is different than the first DOF. Each pixel in the second image has a corresponding pixel in the first image. The method also includes generating a plurality of third images, each corresponding to a blurred version of the second image at each of a plurality of specified depths, generating a plurality of fourth images, each representing a difference between the first image and one or the plurality of third images, and generating a depth map where each pixel in the depth map is based on the pixels in one of the plurality of fourth images.
Abstract:
Systems, methods, and computer-readable media to improve multi-image color-refinement operations are disclosed for refining color differences between images in a multi-image camera system with application to disparity estimation. Recognizing that corresponding pixels between two (or more) images of a scene should have not only the same spatial location, but the same color, can be used to improve the spatial alignment of two (or more) such images and the generation of improved disparity maps. After making an initial disparity estimation and using it to align the images, colors in one image may be refined toward that of another image. (The image being color corrected may be either the reference image or the image(s) being registered with the reference image.) Repeating this process in an iterative manner allows improved spatial alignment between the images and the generation of superior disparity maps between the two (or more) images.
Abstract:
Systems, methods, and computer-readable media to improve multi-image color-refinement operations are disclosed for refining color differences between images in a multi-image camera system with application to disparity estimation. Recognizing that corresponding pixels between two (or more) images of a scene should have not only the same spatial location, but the same color, can be used to improve the spatial alignment of two (or more) such images and the generation of improved disparity maps. After making an initial disparity estimation and using it to align the images, colors in one image may be refined toward that of another image. (The image being color corrected may be either the reference image or the image(s) being registered with the reference image.) Repeating this process in an iterative manner allows improved spatial alignment between the images and the generation of superior disparity maps between the two (or more) images.