Abstract:
A portable electronic device has a connector with a first pin and a second pin, and a battery charging circuit having an input coupled to receive current through the second pin to charge a battery of the device. The portable device also has a controller to determine whether the connector is coupled to an external power source (EPS) having a power converter circuit that can provide the current. The controller on that basis drives the first pin to stimulate the power converter circuit to raise voltage on the second pin. Other embodiments are also described and claimed.
Abstract:
A portable electronic device has a connector with a first pin and a second pin, and a battery charging circuit having an input coupled to receive current through the second pin to charge a battery of the device. The portable device also has a controller to determine whether the connector is coupled to an external power source (EPS) having a power converter circuit that can provide the current. The controller on that basis drives the first pin to stimulate the power converter circuit to raise voltage on the second pin. Other embodiments are also described and claimed.
Abstract:
A first device such as a wristwatch may include a front face at which a display is disposed and a rear face at which a rear housing wall is mounted. Antenna structures may overlap the rear housing wall and may be operable to transmit and receive relatively high frequency signals through the rear housing wall to a communication with a second device such as a wireless power transmitting device for the wristwatch. The second device may also include antenna structures that overlap a top surface housing. Respective sets of magnetic structures may be provided in the first and second devices to align the two devices and to form a reliable wireless communication link between the two devices. The first and second devices may include respective antenna arrays that include pairs of antenna elements that are selectively used to form a reliable wireless communication link.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may include a drive transistor coupled in series with one or more emission transistors and a respective organic light-emitting diode (OLED). A semiconducting-oxide transistor may be coupled between a drain terminal and a gate terminal of the drive transistor to help reduce leakage during low-refresh-rate display operations. To compensate for variations in the threshold voltage of the semiconducting-oxide transistor, the magnitude of a high voltage level of a scan control signal provided to the gate terminal of the semiconducting-oxide transistor may be adjusted. Sensing circuitry may be used to sense a display current while displaying a calibration image. The sensed display current may be compared to an expected display current associated with the calibration image. Processing circuitry may update the high voltage level based on the actual display current compared to the expected display current.
Abstract:
A wearable device can include an electronic device and a band for securing the electronic device to the user. The electronic device can detect an identification of the band, which can serve as an input to initiate actions performed by the electronic device. For example, a type, model, color, size, or other characteristic of a band can be determined and used to select a corresponding action performed by the electronic device. Identification of the band can be performed by components of the electronic device that also serve other purposes. Existing sensors, communication elements, and/or detectors can be used to detect and identity a band provided to the electronic device. The electronic device can respond to the identification of a particular band by performing particular functions, such as changing an aspect of a user interface or altering settings of the electronic device.
Abstract:
A wearable device can include an electronic device and a band for securing the electronic device to the user. The electronic device can detect an identification of the band, which can serve as an input to initiate actions performed by the electronic device. For example, a type, model, color, size, or other characteristic of a band can be determined and used to select a corresponding action performed by the electronic device. Identification of the band can be performed by components of the electronic device that also serve other purposes. Existing sensors, communication elements, and/or detectors can be used to detect and identity a band provided to the electronic device. The electronic device can respond to the identification of a particular band by performing particular functions, such as changing an aspect of a user interface or altering settings of the electronic device.
Abstract:
An electronic device can include a housing, a back cover, a structural member, and a sensing circuit. The housing can at least partially define an internal volume of the electronic device and the back cover can define at least a portion of the internal volume and be connected to the housing. The structural member can be disposed against the back cover and at least partially within the internal volume, the structural member including an electronic component. The sensing circuit can be disposed in the internal volume and electrically coupled to the electronic component. The sensing circuit can detect an amount of charge of the electronic component as part of a user proximity sensor of the electronic device.
Abstract:
A display may have an array of organic light-emitting diode display pixels. Each display pixel may include a drive transistor coupled in series with one or more emission transistors and a respective organic light-emitting diode (OLED). A semiconducting-oxide transistor may be coupled between a drain terminal and a gate terminal of the drive transistor to help reduce leakage during low-refresh-rate display operations. To compensate for variations in the threshold voltage of the semiconducting-oxide transistor, the magnitude of a high voltage level of a scan control signal provided to the gate terminal of the semiconducting-oxide transistor may be adjusted. Sensing circuitry may be used to sense a display current while displaying a calibration image. The sensed display current may be compared to an expected display current associated with the calibration image. Processing circuitry may update the high voltage level based on the actual display current compared to the expected display current.
Abstract:
A wearable device can include an electronic device and a band for securing the electronic device to the user. The electronic device can detect an identification of the band, which can serve as an input to initiate actions performed by the electronic device. For example, a type, model, color, size, or other characteristic of a band can be determined and used to select a corresponding action performed by the electronic device. Identification of the band can be performed by components of the electronic device that also serve other purposes. Existing sensors, communication elements, and/or detectors can be used to detect and identity a band provided to the electronic device. The electronic device can respond to the identification of a particular band by performing particular functions, such as changing an aspect of a user interface or altering settings of the electronic device.
Abstract:
Methods and systems for facilitating health research by utilizing one or more wearable sensor devices with a research mode are provided herein. Systems include a wearable sensor device that can pair with a first portable computing device of a user and a second computing device of a researcher in a first and second pairing, respectively. The wearable sensor device obtains one or more health parameters of a user. In one aspect, the wearable sensor device communicates research related and non-research related health information to the first computing device via the first pairing link and communicates only research related health information to the second computing device via the second pairing link. Methods for pairing one or more wearable sensor devices with one or more research computing devices and switching between operating modes to provide additional research related features are also provided.