Abstract:
A restraint control module is configured to communicate a sync pulse to a sensor. The control module includes a first sync pulse driver and a second sync pulse driver. The first sync pulse driver is connected to a first signal line and the second sync pulse driver connected to a second signal line. The first and second sync pulse drivers being configured to generate a differential sync pulse signal across the first signal line and second signal line using a first signal on the first signal line and a second signal on the second signal line.
Abstract:
A method and system for diagnosing a squib loop in a restraint control module using a transient response is disclosed in the present application. The system may be used with a low energy actuator (LEA) which is primarily an inductive device. A diagnostic current may be applied to the squib loop for a diagnostic test period and the voltage between the feed line terminal and the return line terminal or the voltage between the return line terminal and the feed line terminal can be monitored at a specific time or times during the test period for the expected response (e.g. peak voltage, rise rate, etc). The current may also be reversed to check the correct polarity of a diode in the LEA.
Abstract:
A squib driver circuit for deployment of an active safety restraint in a vehicle. The squib driver circuit may include a low side protection circuit. The low side protection circuit may include a comparator circuit to compare a voltage at a low side return terminal to a reference voltage and activate a timer in response to the voltage at the low side return terminal exceeding the reference voltage, the timer generating a disable signal to disable the low side driver after a predetermined period of time. The low side protection circuit may disable the low side driver after the short is detected and elapse of the predetermined period of time. The squib driver circuit may be formed on a single chip.
Abstract:
A squib driver circuit for deployment of an active safety restraint in a vehicle. The squib driver circuit may include a high side protection circuit. The high side protection circuit may include a comparator circuit to compare the input voltage to a reference voltage and activate a timer in response to the input voltage exceeding the reference voltage, the timer generating a disable signal to disable the high side driver after a predetermined period of time The high side protection circuit may disable the high side driver after a short is detected and elapse of the predetermined period of time. The squib driver circuit may be formed on a single chip.
Abstract:
A method and system for diagnosing the squib leakage resistance through a restraint control module is disclosed in the present application. The newly proposed system and method provides a highly accurate measurement by minimizing/eliminating the effect of the unknown source voltage effects. The concept utilizes the squib leakage resistance diagnostic resources with a multi-step measurement approach, for example utilizing measurements of two currents and/or two voltages.
Abstract:
A restraint control module is configured to communicate a sync pulse to a sensor. The control module includes a first sync pulse driver and a second sync pulse driver. The first sync pulse driver is connected to a first signal line and the second sync pulse driver connected to a second signal line. The first and second sync pulse drivers being configured to generate a differential sync pulse signal across the first signal line and second signal line using a first signal on the first signal line and a second signal on the second signal line.
Abstract:
A method of measuring squib loop resistance including non-linear elements in a restraint control module is disclosed by the present invention. The squib loop resistance is comprised of both linear and non-linear elements. The non-linear elements are linearized into resistive components about the bias points used to make the squib loop resistance measurement. The calculation of the linear squib loop resistance is provided by comparing the complete squib loop resistance and the linearized value of the non-linear elements.