Abstract:
An organic light-emitting element which emits delayed fluorescence comprising specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives or 1,2,4-thiadiazole derivatives in the light-emitting layer, a light-emitting layer comprising the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives or 1,2,4-thiadiazole derivatives, specific specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives and an organic light emitting element comprising the specific 1,2,4-azole derivatives as well as a light emitting layer comprising the specific 1,2,4-azole derivatives; the use of the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives for electrophotographic photoreceptors, photoelectric converters, sensors, dye lasers, solar cell devices and organic light emitting elements, and the use of the specifically substituted 1,2,4-triazole derivatives, 1,2,4-oxadiazole derivatives and 1,2,4-thiadiazole derivatives for generating delayed fluorescence emission.
Abstract:
Process for preparing cyclometallated transition metal-carbene complexes comprising at least one carbene ligand, which comprises reacting a ligand precursor with a base, an auxiliary reagent and a metal complex comprising at least one metal M1 (route A) or reacting the ligand precursor with a basic auxiliary reagent and a metal complex comprising at least one metal M1 (route B). The present invention further relates to the use of an auxiliary reagent selected from among salts comprising at least one metal selected from the group consisting of Ag, Hg, Sb, Mg, B and Al together with a base in a process for preparing cyclometallated metal complexes.
Abstract:
The present invention relates to compounds of formula (I), a process for their production and their use in electronic devices, especially electroluminescent devices. When used as electron transport and/or host material for phosphorescent emitters in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.
Abstract:
Organic electronics applications, especially an organic light-emitting diode (OLED), an organic solar cell (organic photovoltaics) or a switching element such as an organic transistor, for example an organic FET (Field Effect Transistor) and an organic TFT (Thin Film Transistor), comprising at least one substituted phenoxasiline derivative, a organic semiconductor layer, a host material, electron/hole/exciton blocking material or electron/hole injection material comprising at least one substituted phenoxasiline derivative, the use of a substituted phenoxasiline derivative in organic electronics applications, an organic light-emitting diode, wherein at least one substituted phenoxasiline derivative is present in the electron/hole/exciton blocking layer, the electron/hole injection layer and/or the light-emitting layer, a light-emitting layer, an electron/hole/exciton blocking layer and an electron/hole injection layer comprising at least one substituted phenoxasiline derivative and a device selected from the group consisting of stationary visual display units, mobile visual display units; illumination units; keyboards; garments; furniture and wallpaper comprising at least one organic light-emitting diode, at least one light-emitting layer, at least one electron/hole/exciton blocking layer and/or at least one electron/hole injection layer according to the present invention.
Abstract:
A compound of the general formula a process for the production of the compound and its use in electronic devices, especially electroluminescent devices. Improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices are provided when the compound of formula I is used as host material for phosphorescent emitters in electroluminescent devices.
Abstract:
Use of transition metal complexes of the formula (I) in organic light-emitting diodes where: M1 is a metal atom; carbene is a carbene ligand; L is a monoanionic or dianionic ligand; K is an uncharged monodentate or bidentate ligand selected from the group consisting of phosphines; CO; pyridines; nitriles and conjugated dienes which form a π complex with M1; n is the number of carbene ligands and is at least 1; m is the number of ligands L, where m can be 0 or ≧1; o is the number of ligands K, where o can be 0 or ≧1; where the sum n+m+o is dependent on the oxidation state and coordination number of the metal atom and on the denticity of the ligands carbene, L and K and also on the charge on the ligands carbene and L, with the proviso that n is at least 1, and also an OLED comprising these transition metal complexes, a light-emitting layer comprising these transition metal complexes, OLEDs comprising this light-emitting layer, devices comprising an OLED according to the present invention, and specific transition metal complexes comprising at least two carbene ligands.
Abstract:
The present invention relates to the use of transition metal-carbene complexes in organic light-emitting diodes (OLEDs), to a light-emitting layer, to a blocking layer for electrons or excitons, or to a blocking layer for holes, each comprising these transition metal-carbene complexes, to OLEDs comprising these transition metal-carbene complexes, to devices which comprise an inventive OLED, and to transition metal-carbene complexes.