Abstract:
The invention relates to a pipeline system, comprising at least one pipeline loop (9) which is connected at one end to a converger (7) and at a second end to a distributor (5), wherein the converger (7) and the distributor (5) are arranged above one another, and when the converger (7) lies on top pressurized gas can be fed into the converger and the distributor (5) is connected to a drainage container (21), and when the distributor (5) lies on top pressurized gas can be fed into the distributor (5) and the converger (7) is connected to a drainage container (21), the drainage container (21) lying lower than the converger (7) and the distributor (5).The invention furthermore relates to a drainage container (21) for receiving a liquid flowing through a pipeline system (3), wherein the drainage container (21) is connected to the pipeline system (3) via an immersion pipe (33) projecting into the drainage container (21), wherein a siphon (41) is formed in the immersion pipe (33), between the pipeline system (3) and the drainage container (21), and the immersion pipe (33) is heatable, the siphon (41) being closed by solidified material (43) during operation of the pipeline system (3).
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrite salt composition comprising, as significant constituents, an alkali metal nitrate or an alkaline earth metal nitrate or a mixture of alkali metal nitrate and alkaline earth metal nitrate and in each case an alkali metal nitrite and/or alkaline earth metal nitrite, wherein all or part of the nitrite salt composition is brought into contact with an additive composed of nitrogen and/or noble gases, in each case with elemental oxygen, the latter in an amount in the range from 0 to 20% by volume based on the total amount of the additive in combination with nitrogen oxides and/or compounds which generate nitrogen oxide.
Abstract:
The invention relates to a method for operating a linearly concentrating solar power plant (1), in which a heat transfer medium flows through a pipeline loop (47) having at least one receiver, the heat transfer medium having a flow velocity which is such that the flow in the pipeline loop (47) is turbulent, at least part of the heat transfer medium, upon exit from the pipeline loop (47), being extracted and recirculated into the pipeline loop (47). Furthermore, the invention relates to a linearly concentrating solar power plant with at least one pipeline loop (47) having at least one receiver in which a heat transfer medium flowing through the pipeline loop (47) is heated by irradiating solar energy, a mixing device (27) being comprised, in which at least part of the heat transfer medium flowing through the pipeline loop (47) is mixed with heat transfer medium to be delivered.
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrate salt composition selected from the group consisting of alkali metal nitrate and alkaline earth metal nitrate and optionally alkali metal nitrite and alkaline earth metal nitrite, wherein the nitrate salt composition is brought into contact with an additive comprising the components nitric acid and/or nitrous acid and oxygen-comprising gas having an oxygen partial pressure which is equal to or greater than that in air and/or oxygen-generating compounds and optionally nitrogen oxides and/or compounds which generate further nitrogen oxide.