Abstract:
The invention relates to an apparatus for heating a pipeline system, comprising at least two pipelines (1), along which in each case one electrical resistance heating element extends, wherein a potential close to the ground potential is set at each electrical resistance heating element at at least one end (3, 5), and the electrical resistance heating element is connected to a terminal of a DC source or to in each case one phase (7) of an n-phase AC source (9) at a position remote from this end (3, 5), where, when using an n-phase AC source (9), n is an integer equal to or greater than 2.
Abstract:
Nitrate salt composition comprising as significant constituentsA) an alkali metal nitrate and optionally an alkali metal nitrite in a total amount in the range from 90 to 99.84% by weight and B) an alkali metal compound selected from the group B1) alkali metal oxide, B2) alkali metal carbonate, B3) alkali metal compound which decomposes into alkali metal oxide or alkali metal carbonate in the temperature range from 250° C. to 600° C., B4) alkali metal hydroxide MetOH, in which Met is lithium, sodium, potassium, rubidium, cesium, B5) alkali metal peroxide Met2O2, in which Met is lithium, sodium, potassium, rubidium, cesium, and B6) alkali metal superoxide MetO2, in which Met is sodium, potassium, rubidium, cesium, in a total amount in the range from 0.16 to 10% by weight, in each case based on the nitrate salt composition.
Abstract:
A nitrate salt composition comprising A) an alkali metal nitrate and optionally an alkali metal nitrite in a total amount in the range from 90 to 99.84% by weight and B)an alkali metal compound selected from the group B1) alkali metal oxide, B2) alkali metal carbonate, B3) alkali metal compound which decomposes into alkali metal oxide or alkali metal carbonate in the temperature range from 250° C. to 600° C., B4) alkali metal hydroxide MetOH, in which Met is lithium, sodium, potassium, rubidium, cesium, B5) alkali metal peroxide Met2O2, in which Met is lithium, sodium, potassium, rubidium, cesium, and B6) alkali metal superoxide MetO2, in which Met is sodium, potassium, rubidium, cesium, in a total amount in the range from 0.16 to 10% by weight, in each case based on the nitrate salt composition.
Abstract:
The invention relates to an electrode unit for an electrochemical device, comprising a solid electrolyte (3) and a porous electrode (7), the solid electrolyte (3) dividing a compartment for cathode material and a compartment for anode material and the porous electrode (7) being extensively connected to the solid electrolyte (3), with a displacer (23) being accommodated in the anode material compartment, where the displacer (23) is manufactured from a stainless steel or from graphite foil and bears resiliently against the internal geometry of the solid electrolyte (3) in such a way that the displacer (23) does not contact the solid electrolyte over its full area, or with the displacer comprising an outer shell (62) of stainless steel or graphite, and a core (64) of a nonferrous metal, the nonferrous metal being thermoplastically deformable at a temperature which is lower than the temperature at which the stainless steel is thermoplastically deformable, and where for production the shell (62) of stainless steel or graphite is pressed onto the solid electrolyte (3) by introduction and heating of the nonferrous metal, and on cooling forms a gap between solid electrolyte (3) and shell (62) of stainless steel.
Abstract:
A pipeline system in a linearly concentrating solar power station comprises at least one pipeline which is connected at one end to a converger and at a second end to a distributor. The converger and the distributor are arranged at a different geodetic height. When the converger lies on top pressurized gas can be fed into the converger and the distributor is connected to a drainage container. When the distributor lies on top pressurized gas can be fed into the distributor and the converger is connected to a drainage container. The drainage container is lower than the converter and the distributor.
Abstract:
The invention relates to an electrode unit for an electrochemical device, comprising a solid electrolyte (3) and a porous electrode (7), the solid electrolyte (3) dividing a compartment for cathode material and a compartment for anode material and the porous electrode (7) being extensively connected to the solid electrolyte (3), with a displacer (23) being accommodated in the anode material compartment, where the displacer (23) is manufactured from a stainless steel or from graphite foil and bears resiliently against the internal geometry of the solid electrolyte (3) in such a way that the displacer (23) does not contact the solid electrolyte over its full area, or with the displacer comprising an outer shell (62) of stainless steel or graphite, and a core (64) of a nonferrous metal, the nonferrous metal being thermoplastically deformable at a temperature which is lower than the temperature at which the stainless steel is thermoplastically deformable, and where for production the shell (62) of stainless steel or graphite is pressed onto the solid electrolyte (3) by introduction and heating of the nonferrous metal, and on cooling forms a gap between solid electrolyte (3) and shell (62) of stainless steel.
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrate salt composition selected from the group consisting of alkali metal nitrate and alkaline earth metal nitrate and optionally alkali metal nitrite and alkaline earth metal nitrite, wherein all or part of the nitrate salt composition is brought into contact with an additive composed of a combination of elemental oxygen and nitrogen oxides.
Abstract:
Method of maintaining or widening the long-term operating temperature range of a heat transfer medium and/or heat storage medium comprising a nitrate salt composition selected from the group consisting of alkali metal nitrate and alkaline earth metal nitrate and optionally alkali metal nitrite and alkaline earth metal nitrite, wherein the nitrate salt composition is brought into contact with an additive comprising the components nitric acid and/or nitrous acid and oxygen-comprising gas having an oxygen partial pressure which is equal to or greater than that in air and/or oxygen-generating compounds and optionally nitrogen oxides and/or compounds which generate further nitrogen oxide.
Abstract:
The invention relates to a pipeline system for a linearly concentrating solar power plant (1) with at least one receiver line (13), in which a heat transfer medium is heated by radiating solar energy, or with a central receiver and at least one emptying tank (21) and/or one store for the heat transfer medium, the heat transfer medium having a vapor pressure of less than 0.5 bar at the maximum operating temperature. Furthermore, a gas displacement system (31) is comprised, which connects gas spaces in the at least one emptying tank (21) and/or in the store for the heat transfer medium to one another and which has a central gas store (35) and/or a central gas connection (37) and a central exhaust gas outlet (39), through which gas can be discharged into the surroundings.
Abstract:
The invention relates to an apparatus for heating a pipeline system, comprising at least two pipelines (1), along which in each case one electrical resistance heating element extends, wherein a potential close to the ground potential is set at each electrical resistance heating element at at least one end (3, 5), and the electrical resistance heating element is connected to a terminal of a DC source or to in each case one phase (7) of an n-phase AC source (9) at a position remote from this end (3, 5), where, when using an n-phase AC source (9), n is an integer equal to or greater than 2.