Method for reducing and homogenizing residual stress of a metal frame based on elastic acoustic waves

    公开(公告)号:US11680304B2

    公开(公告)日:2023-06-20

    申请号:US17337756

    申请日:2021-06-03

    CPC classification number: C21D10/00

    Abstract: A method for reducing and homogenizing residual stress of a metal frame based on elastic acoustic waves that includes determining an injection scheme of elastic acoustic waves based on residual stress distribution and material characteristics of a metal frame, where the injection scheme comprises at least one of the number of injection directions and corresponding injection direction(s), an excitation scheme and working parameters of the elastic acoustic waves; placing the metal frame in a substrate and fixing the inner and outer frames of the metal frame; assembling an excitation device for the elastic acoustic waves based on the determined excitation scheme of the elastic acoustic waves; injecting the acoustic waves into the metal frame from at least one direction; and performing the reduction and homogenization for multiple rounds if the reduction and homogenization of the residual stress of the metal frame in a single round does not meet the requirement.

    ULTRASONIC MONITORING PROBE FOR INTERNAL SERVICE STRESS OF A MARINE STRUCTURAL COMPONENT

    公开(公告)号:US20210382014A1

    公开(公告)日:2021-12-09

    申请号:US17329585

    申请日:2021-05-25

    Abstract: An ultrasonic monitoring probe for internal service stress of a marine structural component. The probe includes a detection wedge provided with two symmetrically arranged inclined surfaces at its top, two connecting channels vertical to the two inclined surfaces and penetrating through the detection wedge and provided with threaded holes close to the inclined surfaces and water storage cavities far away from the inclined surfaces, two ultrasonic transducers mounted in the threaded holes of the two connecting channels and configured for generating and receiving ultrasonic waves; two bottom rings located at a bottom of the detection wedge and arranged relative to the water storage cavities and configured for attachment to a surface of a detected component, a magnet disposed in a magnet placement hole arranged at a central position between the two connecting passages, and a monitoring device electrically connected with the two ultrasonic transducers.

    DEVICE AND METHOD FOR CONTROLLING TRANSVERSE AND LONGITUDINAL STRESS WAVES DURING CURING PROCESS OF ENERGETIC COMPOSITE MATERIALS

    公开(公告)号:US20210347095A1

    公开(公告)日:2021-11-11

    申请号:US17188171

    申请日:2021-03-01

    Abstract: The present application relates to the technical field of the research on energetic composite materials, and in particular to a device and a method for controlling transverse and longitudinal stress waves during the curing process of energetic composite materials. The device for controlling transverse and longitudinal stress waves comprises a curing vessel containing an energetic composite materials to be cured; a vertical exciter that is vertically incident to the curing vessel; and a plurality of oblique exciters which are arranged around the vertical exciter and obliquely incident to the curing vessel, wherein the oblique exciters have inclination angles between a first critical angle and a second critical angle. By means of incident transverse and longitudinal waves, the internal radial residual stress and the internal axial residual stress are reduced and homogenized, so as to improve stability and mechanical property of the energetic composite materials during curing.

    NON-DESTRUCTIVE DETECTING DEVICE FOR COMPONENT RESIDUAL STRESS GRADIENT

    公开(公告)号:US20210025769A1

    公开(公告)日:2021-01-28

    申请号:US16897414

    申请日:2020-06-10

    Abstract: The present disclosure relates to the technical field of non-destructive detecting of residual stress, and in particular to a non-destructive detecting device for component residual stress gradient. the non-destructive detecting device comprises: groups of transmitting transducers and receiving transducers arranged symmetrically to each other, the transmitting transducers closer to the symmetry axis have greater excitation frequencies; an acoustic wedge coupled to the groups of transmitting transducers and receiving transducers, wherein groups of cylindrical transmitting tunnels and receiving tunnels are provided obliquely within the transmitting connection area and the receiving connection area through their top surfaces and toward their bottom surfaces, the transmitting transducers are coupled to the transmitting tunnels in a one-to-one correspondence, the receiving transducers are coupled to the receiving tunnels in a one-to-one correspondence, and the bottom surfaces of the transmitting connection area and the receiving connection area are pressed against the surface of the detected component; and a calculation processing module electrically connected to the transmitting transducers and the receiving transducers. The non-destructive detecting device solves the problem that the residual stress values of components at different penetration depths cannot be detected at the same time.

    METHOD FOR REDUCING PROPELLANT CURING RESIDUAL STRESS BY HIGH-ENERGY ACOUSTIC BEAM

    公开(公告)号:US20200346991A1

    公开(公告)日:2020-11-05

    申请号:US16751731

    申请日:2020-01-24

    Abstract: The present disclosure is related to the technical field of propellant performance research, and in particular, to a method for reducing propellant curing residual stress by a high-energy acoustic beam. The method includes the following steps: injecting a propellant slurry into a curing container and waiting for the propellant slurry to start curing; actuating, when the propellant slurry starts curing, a high-energy acoustic beam generator and a high-energy acoustic beam transducer to continuously emit high-energy acoustic beam to the propellant slurry in the curing container until the propellant slurry is cured to form a propellant grain; and closing the high-energy acoustic beam generator and the high-energy acoustic beam transducer. The method for reducing propellant curing residual stress by high-energy acoustic beam provided in the present disclosure can reduce residual stress inside the propellant in an effective manner, thereby ensuring operation safety of the aerospace equipment.

    METHOD FOR CONTROLLING DEFORMATION OF A LARGE-SCALE CRANKSHAFT

    公开(公告)号:US20220081736A1

    公开(公告)日:2022-03-17

    申请号:US17363579

    申请日:2021-06-30

    Abstract: A method for controlling deformation of a large-scale crankshaft comprising detecting and recording stress value(s) of part(s) to be regulated by the crankshaft; fixing the crankshaft on a tool to couple transmitting ends of high-energy acoustic beam transducers with the part(s) to be regulated; turning on the high-energy acoustic beam transducers to emit high-energy acoustic beams into the crankshaft, controlling working frequencies of the high-energy acoustic beam transducers within a range of 10-30 kHz, and setting a predicted regulation and control time according to the stress value(s) of the part(s) to be regulated; and closing the high-energy acoustic beam transducers when the predicted regulation and control time is reached, and taking the crankshaft out of the tool.

Patent Agency Ranking