Abstract:
The present invention relates to the field of liquid crystal display, and provides a method for manufacturing a TFT and the TFT thereof. The TFT comprises: a substrate; a gate electrode with a three-dimensional structure formed on the substrate; a gate insulating layer for covering the gate electrode; a semiconductor layer formed on the gate insulating layer; a buffer layer formed on the semiconductor layer; and source and drain electrodes formed on the buffer layer, wherein the semiconductor layer of the TFT is of a three-dimensional structure. According to the present invention, it is able to reduce the driving voltage, the power consumption of the driving circuit and the area occupied by the TFT, and to increase the light transmission rate.
Abstract:
Disclosed are a backlight module, a control method therefor and a display device, a driving method therefor. A backlight source is divided into light-emitting areas, and a current control circuit for driving the light-emitting area to emit light is configured for each light-emitting area. The light-emitting areas in the backlight module are arranged in one-to-one correspondence to the current control circuits.
Abstract:
Disclosed is a method for converting image data. The method includes: acquiring image data of a target image, wherein the image data includes first pixel values of m pixels in the target image, each of the first pixel values includes a first color value of at least one color channel, the first color value being within a target color value interval of the at least one color channel; dividing the target color value interval into n color value partitions; determining a color value partition where the first color value falls from the n color value partitions; and converting the first color value into a second color value according to a position of the first color value in the color value partition, the number of bits occupied by the second color value being less than the number of bits occupied by the first color value.
Abstract:
A display panel includes a plurality of sub-pixels each corresponding one color. Each sub-pixel includes a plurality of display units and a plurality of driving sub-circuits that are in one-to-one correspondence with the plurality of display units. Each driving sub-circuit is configured to drive a corresponding one of the plurality of display units to be in a bright state or a dark state. The plurality of driving sub-circuits are configured to drive at least two of the plurality of display units to display different display brightness in the bright state.
Abstract:
A driving method, a driving apparatus and a display device are disclosed. The driving method comprises: forming a first partition overdriving table and a second partition overdriving table. The first partition overdriving table corresponds to the first partition, and the second partition overdriving table corresponds to the second partition. The first partition overdriving table and the second partition overdriving table have the same matrix form. Smooth treatment is performed on a first partition and a second partition which are adjacent to each other according to the first smooth algorithm so as to blur the boundary between the first partition and the second partition, thereby effectively reducing or eliminating the phenomenon of demarcation between multiple partitions.
Abstract:
The present disclosure provides a driving signal generating circuit, a driving signal generating method and a 3D display device. The driving signal generating circuit includes a voltage conversion unit, an output unit and a control unit. The voltage conversion unit is configured to convert an external input voltage into a plurality of polarization voltages for driving a polarization control panel in an active polarization 3D display device, and transmit the plurality of polarization voltages to the output unit. The control unit is configured to generate a control signal. The output unit is configured to output one of the polarization voltages or a zero voltage to the polarization control panel in a time-division manner according to the control signal.
Abstract:
An interface conversion circuit, a display panel driving method and a display apparatus for realizing UHD image display at least by a LVDS interface together with an UHD display apparatus are provided. The interface conversion circuit comprises a low voltage differential signaling (LVDS) interface and a data format conversion module. The LVDS interface is configured to receive a LVDS signal from a LVDS signal source and transmit the LVDS signal to the data format conversion module. The data format conversion module is configured to convert the received LVDS signal into a digital video interface eDP signal.