Abstract:
A first personal electronic (PE) device may enable generation, updating, and/or storage of user configuration information. The user configuration information may comprise information pertaining to device configuration and/or operational preferences specific to the device user and/or various use settings, connectivity, and/or use of available resources. The generation, updating, and/or storage of the user configuration information may be performed manually and/or automatically, and may be performed directly within the first PE device and/or via networked devices, which may communicatively coupled to the first PE device. A second PE device may be enabled to be communicatively coupled to the first PE device and/or the networked devices. The second PE device may then be enabled to download existing user configuration information from the first PE device and/or the networked device, and the downloaded user configuration may be utilized to configure the second PE device.
Abstract:
A communication platform that integrates communication and sensing capabilities into a single integrated communication platform. The communication platform can senses relativity information, such as environmental information, location information, platform user information, or the like. Further, the communication platform can perform cross-sensor functionality so as to utilize relativity information from multiple sensors. The cross-sensor functionality can be utilized in multiples sensors implemented within the communication platform, in one or more other communication platforms, or any combination thereof. The communication platform can also offload processing operations from a host processor to one or more sensor hubs and/or sensor processors within the communication platform and/or to a sensor processor of one or more other communication platforms. Similarly, the communication platform can also offload sensing operations by requesting relativity from one or more sensors of one or more other communication platforms.
Abstract:
Systems and methods for adaptive access and handover configuration based on historical data are provided. Access and handover decisions are optimized in a multiple radio access technology environment using historical data associated with network performance. Future needs for access and handovers are predicted using historical data associated with the user and historical data associated with network performance. Performance metrics are received periodically or continuously from nodes in one or more networks at a centralized controller. The centralized multi RAT controller correlates these performance metrics and determines predicted handovers for a user device. Preparations for the predicted handovers can then be made prior to the handover event.
Abstract:
An apparatus and method are disclosed to increase the efficiency of communications between wireless power transfer (WPT) devices. During an initial power transfer and/or communication between WPT devices, characteristics regarding the operation and capabilities of the devices are shared and stored on one or both of the WPT devices. On subsequent power transfers and/or communications, a WPT device can quickly match the capabilities and preferences for the same WPT device. Various systems are presented to generate, access, and implement the stored information to quickly tailor and improve a communication session for a specific WPT device.
Abstract:
According to one disclosed embodiment, a smart power delivery system includes a power conversion unit having a communication module and a power management module that can convert mains power into an optimized voltage and limited current used to power an electronic device. In one embodiment, a power conversion unit can optimize an output voltage by communicating with a connected electronic device and exchanging parameters representing desired characteristics of the output voltage. In one embodiment, an electronic device receives power from a power conversion unit through a wired power conduit. In another embodiment, an electronic device receives power from a power conversion unit through a wireless power conduit. In one embodiment, an optimal voltage is selected after negotiation between multiple electronic devices and a power conversion unit.
Abstract:
The present disclosure describes a mechanical chassis having one or more conductive regions separated by one or more non-conductive regions. When a magnetic field contacts, or is sufficiently proximate to, this communication device, the magnetic field induces one or more eddy currents that flow in one or more closed loops around a surface of the one or more conductive regions. The one or more non-conductive regions confine the one or more eddy currents to the one or more conductive regions. The magnetic fields generated by these one or more eddy currents are weaker than a magnetic field generated by eddy currents in a communication device having a mechanical chassis constructed entirely of conductive material.
Abstract:
A wireless mobile communication (WMC) device may discover available networks, and available local and/or remote resources. The WMC device may configure routes utilizing one or more of discovered resources and one or more available networks. The routes may be utilized to performed operations requested via the WMC device. A standardized language and/or protocol may be utilized in discovering and/or communicating with available resources and/or networks. The standardized language and/or protocol may enable commonality among the discovered networks and/or resources, and encryption of data communicated through the established routes. The standardized language and/or protocol may be updated and/or modified to incorporate new resources either by direct interactions between the new resources and the WMC device, or via existing available resources and/or networks. The discovery of resources and/or establishment of routes may be user-triggered, or it may be based on user preference information.
Abstract:
A wireless power transfer system is disclosed that allows for directed power distribution. A power station that transmits the power can also transmit a distribution instruction that authorizes and/or prohibits various systems/components within a receiver device to receive power. A manager and power router within the receiver device route the power as directed by the distribution instruction. When multiple components/systems are authorized to receive the power, the receiver device can monitor power need and route as needed between authorized components/systems. in addition, the receiver device can act as a transmitter to wireless flash power to another device. The flash consists of bursting a large amount of power over a relatively short time. Several constraints, configurations, and considerations are required to perform this function.