Abstract:
An unmanned aerial vehicle (UAV) and base station are disclosed that communicate within a first cell via schedule requests to set up transmission of up-link data. The UAV additionally communicates up-link data via a grant-free underlay broadcast channel to one or more neighboring base stations of the terrestrial cellular network. Transmitters, receivers, related methods are also disclosed for modulation and demodulation of the transmission packets.
Abstract:
A communication device, a method of operating a communication device, and a spread-spectrum receiver are disclosed. The method includes receiving an incoming RF signal, demodulating the incoming RF signal to generate a baseband signal, filtering the baseband signal with a normalized matched filter having filter characteristics matched to a pulse-shaping filter of the transmitter that generated the incoming RF signal, and extracting a received signal from a normalized output generated by the normalized matched filter. As a result, interferences and noise from harsh environments may be suppressed.
Abstract:
Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle of the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.
Abstract:
Systems, devices, and methods are described for multi-band spread spectrum communication. A communication system, which may include any number of communication nodes, may include a first communication node including a dedicated first number of subcarrier bands, and a second communication node including a dedicated second number of subcarrier bands. The first communication node may be configured to transmit a link request to the second communication node over the first number of subcarrier bands, and the second communication node may be configured to transmit another link request to the first communication node over the second number of subcarrier bands.
Abstract:
An unmanned aerial vehicle (UAV) and base station are disclosed that communicate within a first cell via schedule requests to set up transmission of up-link data. The UAV additionally communicates up-link data via a grant-free underlay broadcast channel to one or more neighboring base stations of the terrestrial cellular network. Transmitters, receivers, related methods are also disclosed for modulation and demodulation of the transmission packets.
Abstract:
Wireless communication systems, base stations, and user equipment are disclosed that enable communication of scheduling requests via an underlay control channel that has an energy below a noise level of the spectrum. The scheduling requests may be sent and received at any time, including during downlink and uplink data communication periods of the base station.
Abstract:
Circularly pulse-shaped waveforms for communication systems are disclosed herein including a single carrier modulation in which pulse-shaping is performed using a circular convolution by the transmitter for various modulation schemes. A transmitter, related method, and corresponding receiver are also disclosed for demodulation of the single carrier circularly pulse-shaped signal and data extraction.
Abstract:
A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.