摘要:
Systems and methods are described that facilitate compensating for slow scan direction displacement (e.g., skew and/or bow) defects in a raster line using slow-scan electronic registration. Input image data is buffered at low-resolution (e.g., 600 spi or the like). Displacement compensation is performed as the low-resolution contone image data is converted to high-resolution (e.g., 2400 spi or the like), and a displaced (e.g., staggered) halftoning threshold array is indexed to account for detected displacement. Displacement compensation is again performed during conversion of the high-resolution contone image data to high-resolution binary image data that is used to generate an output image.
摘要:
Embodiments described herein are directed to detecting and/or measuring distortions of substrate media that can occur during a printing process. The distortion can be detected and/or measured using a composite image generated from a reference image having a first periodic pattern and print image, disposed on a test substrate media, having a second periodic pattern. The first and second periodic patterns are specified so that the composite image includes a moiré pattern having moiré fringes resulting from interference between the first periodic pattern associated with the reference image and the second periodic pattern associated with the print image. The moiré fringes can be used to detect and calculate an amount of distortion of the test substrate media.
摘要:
A system and method for processing a digital image for rendering are provided. The method includes performing one or more Line Width Control (LWC) operations on digital image data including pixels having pixel values representing gray levels and tag states providing information for specialized rendering techniques thereby changing one or more pixel values resulting in one or more inaccurate pixel tag states, identifying and reassigning one or more inaccurate pixel tag states for improving the rendering of the resultant digital image. An apparatus, such as an image processing system, capable of performing line width control and tag reassignment is also provided.
摘要:
Image data is scaled, rotated and/or otherwise manipulated. Diffusive effects of associated interpolation and/or re-sampling are compensated for, or corrected, by applying an adaptive packing form of error diffusion to output data of one or more manipulating transforms. For example, rank order error diffusion is applied to output data of a manipulating transform, thereby restoring compaction to otherwise diffuse halftone structures (e.g., halftone dots, lines, etc), saturated text and/or other small, high contrast image elements.
摘要:
Image object adjustment is achieved without lookup tables or templates. Cross sections of image objects are modeled. Parameters of the modeled cross-section are adjusted in accord with a desired effect. For example, a width of the modeled cross section is change. The changed cross section model is sampled to determine a new value for a target pixel. For instance, vector windows are applied to a target pixel. If a candidate image object is included in the vector window, a cross section thereof is modeled as a rectangle. A parameter of the model, such as a width, is adjusted. Area sampling of the adjusted model can be used to determine a new value for the target pixel. Accuracy can be increased by blending information associated with a plurality of vector windows.
摘要:
Image data is scaled, rotated and/or otherwise manipulated. Diffusive effects of associated interpolation and/or re-sampling are compensated for, or corrected, by applying an adaptive packing form of error diffusion to output data of one or more manipulating transforms. For example, rank order error diffusion is applied to output data of a manipulating transform, thereby restoring compaction to otherwise diffuse halftone structures (e.g., halftone dots, lines, etc), saturated text and/or other small, high contrast image elements.
摘要:
An imaging apparatus includes an image acquisition section which converts a physical image to a digital image representation using non-ideal optics such as an array lens. This image acquisition results in a digital image representation containing errors or artifacts. A memory in data communication with a processor stores a plurality of compensation parameters selected for use in correcting errors induced by the lens array. The compensation parameters are determined by performing a lens characterization which includes measuring lens performance at a plurality of locations along the lens. After the processor adjusts the image representation, the post-compensated digital image representation may be further processed, stored, transferred, and the like. According to another embodiment of the invention, a non-ideal array lens induces errors in an image representation during a printing or output operation. Similarly, an image processor applies pre-compensation parameters to the desired or ideal image representation in electronic form to compensate for errors which are known to be induced by the lens during the output operation. Accordingly, when the pre-compensated image representation is output using the non-ideal lens, the physical image output appears to have been printed with an ideal lens.
摘要:
Raster Output Scanners and printing systems are presented along with methods for mitigating banding in printing systems, in which electronic banding compensation is employed using cross-process direction light source intensity banding correction profiles tailored to corresponding reflective facets of a rotating polygon.
摘要:
Provided are methods, apparatus and systems related to watermark encoding via pixel spacing modulation. According to one exemplary embodiment, a method modulates the pixel spacing associated with an image to encode a watermark.
摘要:
An optical scanning device projects an image onto a photoreceptor within a print system. A laser light source generates a plurality of light beam outputs, wherein the light beam outputs are arranged in a two-dimensional parallelogram array within a substantially horizontal axis and a substantially vertical axis that is perpendicular to the horizontal axis. The two-dimensional parallelogram array has an odd number of rows of light beam outputs, wherein each row has an equal even number of light beam outputs. A rotating polygon mirror includes a plurality of deflecting surfaces, each of the deflecting surfaces deflects the light beams emitted from the laser light source. The light beam output array projects a first swath N onto the photoreceptor via the rotating mirror and swaths [N+1, N+2, . . . ] are subsequently placed at a level one-half down the number of light beam outputs of the previous swath. Each swath has the identical number of light emitting outputs as the two-dimensional array.