Abstract:
The present disclosure provides anti-transferrin receptor antibodies, compositions comprising the same and methods of their use. This disclosure also provides polynucleotides and vectors encoding the anti-transferrin receptor antibodies and cells comprising the same, methods of making the antibodies, and molecules comprising the antibodies.
Abstract:
The present disclosure provides anti-transferrin receptor antibodies, compositions comprising the same and methods of their use. This disclosure also provides polynucleotides and vectors encoding the anti-transferrin receptor antibodies and cells comprising the same, methods of making the antibodies, and molecules comprising the antibodies.
Abstract:
The invention provides methods of treating diseases, disorders or injuries involving demyelination and dysmyelination, including multiple sclerosis, by the administration of a LINGO-4 antagonist.
Abstract:
The invention provides methods of treating diseases, disorders or injuries involving motor neuron survival and axonal growth, including amylotrophic lateral sclerosis, by the administration of a LINGO-2 antagonist.
Abstract:
Endogenous LINGO-1 is a negative regulator for neuronal survival, axon regeneration, oligodendrocyte differentiation and myelination. Molecules that block endogenous LINGO-1 function, such anti-LINGO-1 antibodies can be used as therapeutics for the treatment of neuron and oligodendrocyte dysfunction. The present invention provides antibodies specific for LINGO-1, and methods of using such antibodies as antagonists of endogenous LINGO-1 function. The invention further provides specific hybridoma and phage library-derived monoclonal antibodies, nucleic acids encoding these antibodies, and vectors and host cells comprising these antibodies. The invention further provides methods of promoting oligodendrocyte survival and myelination in a vertebrate, comprising administering to a vertebrate in need of such treatment an effective amount of an anti-LINGO-1 antibody
Abstract:
Endogenous Sp35 is a negative regulator for neuronal survival, axon regeneration, oligodendrocyte differentiation and myelination. Molecules that block endogenous Sp35 function, such anti-Sp35 antibodies can be used as therapeutics for the treatment of neuron and oligodendrocyte dysfunction. The present invention provides antibodies specific for Sp35, and methods of using such antibodies as antagonists of endogenous Sp35 function. The invention further provides specific hybridoma and phage library-derived monoclonal antibodies, nucleic acids encoding these antibodies, and vectors and host cells comprising these antibodies. The invention further provides methods of promoting oligodendrocyte survival and myelination in a vertebrate, comprising administering to a vertebrate in need of such treatment an effective amount of an anti-Sp35 antibody.
Abstract:
The invention provides methods of treating diseases, disorders or injuries involving motor neuron survival and axonal growth, including amylotrophic lateral sclerosis, by the administration of a LINGO-2 antagonist. An exemplary method for promoting survival of a motor neuron, comprising contacting said motor neuron with an effective amount of a composition comprising a LINGO-2 antagonist selected from the group consisting of: (i) a soluble LINGO-2 polypeptide; (ii) a LINGO-2 antibody or antigen-binding fragment thereof; (iii) a LINGO-2 antagonist polynucleotide; (iv) a LINGO-2 aptamer; and (v) a combination of two or more of said LINGO-2 antagonists.
Abstract:
Endogenous Sp35 is a negative regulator for neuronal survival, axon regeneration, oligodendrocyte differentiation and myelination. Molecules that block endogenous Sp35 function, such anti-Sp35 antibodies can be used as therapeutics for the treatment of neuron and oligodendrocyte dysfunction. The present invention provides antibodies specific for Sp35, and methods of using such antibodies as antagonists of endogenous Sp35 function. The invention further provides specific hybridoma and phage library-derived monoclonal antibodies, nucleic acids encoding these antibodies, and vectors and host cells comprising these antibodies. The invention further provides methods of promoting oligodendrocyte survival and myelination in a vertebrate, comprising administering to a vertebrate in need of such treatment an effective amount of an anti-Sp35 antibody.
Abstract:
The present disclosure provides anti-transferrin receptor antibodies, compositions comprising the same and methods of their use. This disclosure also provides polynucleotides and vectors encoding the anti-transferrin receptor antibodies and cells comprising the same, methods of making the antibodies, and molecules comprising the antibodies.
Abstract:
Methods of activating GDF11 proteins in vitro as well as formulations of mature GDF11 polypeptides with enhanced solubility at neutral pH are provided.