Abstract:
A solid oxide fuel cell (SOFC) includes a solid oxide electrolyte with a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes a ceria-based ceramic component and an electrically conductive component. Another SOFC includes a solid oxide electrolyte containing a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes an electrically conductive component and an ionically conductive component, in which the ionically conductive component includes a zirconia-based ceramic containing scandia and at least one of ceria, ytterbia and yttria.
Abstract:
A method of making an interconnect for a solid oxide fuel cell stack includes providing a chromium alloy interconnect and providing a nickel mesh in contact with a fuel side of the interconnect. Formation of a chromium oxide layer is reduced or avoided in locations between the nickel mesh and the fuel side of the interconnect. A Cr—Ni alloy or a Cr—Fe—Ni alloy is located at least in the fuel side of the interconnect under the nickel mesh.
Abstract:
A method for forming a solid oxide fuel cell (SOFC) includes co-firing the anode and cathode electrode layers, which involves placing an unfired anode onto a surface during the cathode print cycle. To avoid damage to the electrolyte and cathode production cycle by the green anode ink, an abrasion resistant ink is used to print the anode electrode layer.
Abstract:
A fuel cell system component ink includes a fuel cell system component powder, a solvent including propylene carbonate (PC), and a binder including polypropylene carbonate (PPC).
Abstract:
A solid oxide fuel cell (SOFC) includes a solid oxide electrolyte, an anode disposed on a first side of the electrolyte and a cathode disposed on an opposing second side of the electrolyte. The anode includes a ceramic phase and a metallic phase including a Ni catalyst and a dopant including Al, Ba, Ca, Cr, Fe, Mo, Re, Rh, Ru, Sr, W, or any combination thereof.
Abstract:
A method for forming a solid oxide fuel cell (SOFC) includes co-firing the anode and cathode electrode layers, which involves placing an unfired anode onto a surface during the cathode print cycle. To avoid damage to the electrolyte and cathode production cycle by the green anode ink, an abrasion resistant ink is used to print the anode electrode layer.
Abstract:
A solid oxide fuel cell (SOFC) includes a solid oxide electrolyte with a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes a ceria-based ceramic component and an electrically conductive component. Another SOFC includes a solid oxide electrolyte containing a zirconia-based ceramic, an anode electrode, and a cathode electrode that includes an electrically conductive component and an ionically conductive component, in which the ionically conductive component includes a zirconia-based ceramic containing scandia and at least one of ceria, ytterbia and yttria.