Abstract:
Computerized appliances may be operated by users remotely. In one implementation, a learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Computerized appliances may be operated by users remotely. A learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Computerized appliances may be operated by users remotely. In one exemplary implementation, a learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Computerized appliances may be operated by users remotely. A learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Systems and methods for processing image signals are described. One method comprises obtaining a generator signal based on an image signal and determining relative latencies associated with two or more pulses in a pulsed signal using a function of the generator signal that can comprise a logarithmic function. The function of the generator signal can be the absolute value of its argument. Information can be encoded in the pattern of relative latencies. Latencies can be determined using a scaling parameter that is calculated from a history of the image signal. The pulsed signal is typically received from a plurality of channels and the scaling parameter corresponds to at least one of the channels. The scaling parameter may be adaptively calculated such that the latency of the next pulse falls within one or more of a desired interval and an optimal interval.
Abstract:
A simple format is disclosed and referred to as Elementary Network Description (END). The format can fully describe a large-scale neuronal model and embodiments of software or hardware engines to simulate such a model efficiently. The architecture of such neuromorphic engines is optimal for high-performance parallel processing of spiking networks with spike-timing dependent plasticity. Methods for managing memory in a processing system are described whereby memory can be allocated among a plurality of elements and rules configured for each element such that the parallel execution of the spiking networks is most optimal.
Abstract:
Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associated with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.
Abstract:
Computerized appliances may be operated by users remotely. In one implementation, a learning controller apparatus may be operated to determine association between a user indication and an action by the appliance. The user indications, e.g., gestures, posture changes, audio signals may trigger an event associated with the controller. The event may be linked to a plurality of instructions configured to communicate a command to the appliance. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The sensory input may be used to determine the user indications. During operation, upon determine the indication using sensory input, the controller may cause execution of the respective instructions in order to trigger action by the appliance. Device animation methodology may enable users to operate computerized appliances using gestures, voice commands, posture changes, and/or other customized control elements.
Abstract:
Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associates with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.