Abstract:
In one embodiment, a first router determines whether a network coupling the first router to one or more second routers is transit-only, wherein transit-only indicates connecting only routers to provide for transmission of data from router to router. When the network is transit-only, the first router generates an Open Shortest Path First (OSPF) Link State Advertisement (LSA) that includes an address for the network and a designated network mask. The designated network mast operates as a transit-only identification that indicates the address should not be installed in a Routing Information Base (RIB) upon receipt of the OSPF LSA at the one or more second routers. When the network is not transit-only, the first router generates an OSPF LSA that includes the address for the network but does not include the designated network mask, to permit installation of the address in a RIB upon receipt of the OSPF LSA at the one or more second routers.
Abstract:
Present disclosure relates to methods for preparing BGP update messages for transmission and processing received update messages. The methods are based on grouping path attributes common to a plurality of IP address prefixes into respective sets identified with respective set identifiers and, instead of duplicating path attributes in each BGP update message, including a respective identifier referring to a certain set of path attributes provided in an earlier BGP update message when sending subsequent update messages. Grouping of path attributes into individual sets associated with respective identifiers provides significant advantages by enabling re-use of the results of previous processing on both the sending and receiving sides associated with transmission of BGP update messages. In addition, such an approach limits the amount of information transmitted in the control plane because duplicate sets of path attributes may only be transmitted once and merely be referred to in subsequent update messages.
Abstract:
In one embodiment, a plurality of packets is sent from an origin device along a communication path toward a destination device. Each packet includes a lifespan indicator which is incrementally increased for each subsequently sent packet. A plurality of response messages are received at the origin device from a plurality of intermediate devices, respectively. A plurality of secure path objects included in the plurality of response messages, respectively, is determined. Additionally, the plurality of secure path objects are validated based on validation information accessible by the origin device. Validation results of the plurality of secure path objects are checked to determine whether a packet that is sent from the origin device and received by the destination device travels along a particular communication path as dictated by control plane information.
Abstract:
One embodiment identifies all one-hop neighbor nodes and two-hop neighbor nodes of a node; determines an active set of one-hop neighbor nodes for the node, comprising: includes in the active set each one-hop neighbor node that is either an edge node or connected with at least one two-hop neighbor node with which no other one-hop neighbor nodes are connected; and if the active set is not yet complete, then: determine all combinations of one-hop neighbor nodes that are not already in the active set; and tests each combination in order of each combination's total-energy value to determine whether a specific combination is able to complete the active set; if no combination is able to complete the active set, then including all one-hop neighbor nodes in the active set; and communicates a message to each one-hop neighbor node in the active set indicating that it is in the active set.
Abstract:
Present disclosure relates to methods for preparing BGP update messages for transmission and processing received update messages. The methods are based on grouping path attributes common to a plurality of IP address prefixes into respective sets identified with respective set identifiers and, instead of duplicating path attributes in each BGP update message, including a respective identifier referring to a certain set of path attributes provided in an earlier BGP update message when sending subsequent update messages. Grouping of path attributes into individual sets associated with respective identifiers provides significant advantages by enabling re-use of the results of previous processing on both the sending and receiving sides associated with transmission of BGP update messages. In addition, such an approach limits the amount of information transmitted in the control plane because duplicate sets of path attributes may only be transmitted once and merely be referred to in subsequent update messages.
Abstract:
In one embodiment, a validation server in a computer network determines that an edge router of the computer network has blocked access to a desired server address based on the edge router not having authentication information for the desired server address. In response, the server creates a white-listing policy to temporarily allow access to the desired server address at the edge router, and sends the white-listing policy to the edge router. The validation server may then proceed with performing server fetching operations to the desired server address from the validation server while the white-listing policy is in effect, and instructs the edge device to remove the white-listing policy once the server fetching operations are completed.
Abstract:
In one embodiment, a plurality of packets is sent from an origin device along a communication path toward a destination device. Each packet includes a lifespan indicator which is incrementally increased for each subsequently sent packet. A plurality of response messages are received at the origin device from a plurality of intermediate devices, respectively. A plurality of secure path objects included in the plurality of response messages, respectively, is determined. Additionally, the plurality of secure path objects are validated based on validation information accessible by the origin device. Validation results of the plurality of secure path objects are checked to determine whether a packet that is sent from the origin device and received by the destination device travels along a particular communication path as dictated by control plane information.