Abstract:
Packet transmission techniques are disclosed herein. An exemplary method includes receiving a packet that identifies an internet protocol (IP) address assigned to more than one destination node; selecting a virtual routing and forwarding table based, at least in part, on a segmentation identification in the packet; identifying a designated destination node in the packet based, at least in part, on the selected virtual routing and forwarding table; and transmitting the packet to the designated destination node.
Abstract:
An example method for determining an optimal forwarding path across a network having VxLAN gateways configured to implement both FGL networking and VxLAN capabilities can include learning RBridge nicknames associated with the VxLAN gateways in the network. Additionally, the method can include determining a path cost over the FGL network between each of the VxLAN gateways and a source node and a path cost over the VxLAN between each of the VxLAN gateways and a destination node. Further, the method can include determining an encapsulation overhead metric associated with the VxLAN and selecting one of the VxLAN gateways as an optimal VxLAN gateway. The selection can be based on the computed path costs over the FGL network and the VxLAN and the encapsulation overhead metric.
Abstract:
A method is provided in one example embodiment and includes determining whether a first network element with which a second network element is attempting to establish an adjacency is a client type element. If the first network element is determined to be a client type element, the method further includes determining whether the first and second network elements are in the same network area. If the first network element is a client type element and the first and second network elements are determined to be in the same network area, the adjacency is established. Subsequent to the establishing, a determination is made whether the first network element includes an inter-area forwarder (IAF).
Abstract:
Systems and methods for triggering service activation include starting a vCPE instance in response to a request for a service, instantiating a service container for the requested service and starting the service in the service container, installing a fast path entry for the service container in a local bridge table, detecting an idle timeout of the service and labeling the local bridge table entry for the corresponding service container as inactive, notifying a cloud services manager that the service container is inactive, and removing the service container.
Abstract:
An example method for facilitating multiple mobility domains with VLAN translation in a multi-tenant network environment is provided and includes detecting attachment of a first virtual machine on a first port and a second virtual machine on a second port of a network element, the first port and the second port being configured with a first mobility domain and a second mobility domain, respectively, and the first and second virtual machines being configured on a same original VLAN, determining whether the original VLAN falls within a pre-configured VLAN range, translating the original VLAN to a first VLAN on the first port corresponding to the first mobility domain and to a second VLAN on the second port corresponding to the second mobility domain, and segregating traffic on the original VLAN into the first VLAN and the second VLAN according to the respective mobility domains for per-port VLAN significance.
Abstract:
Packet transmission techniques are disclosed herein. An exemplary method includes receiving a packet that identifies an internet protocol (IP) address assigned to more than one destination node; selecting a virtual routing and forwarding table based, at least in part, on a segmentation identification in the packet; identifying a designated destination node in the packet based, at least in part, on the selected virtual routing and forwarding table; and transmitting the packet to the designated destination node.
Abstract:
An example method for determining an optimal forwarding path across a network having gateways configured to implement a plurality of logical networking protocols can include determining a path cost over a first logical network between each of the gateways and a source node and a path cost over the a second logical network between each of the gateways and a destination node. Additionally, the method can include determining an encapsulation cost difference between switching packets over the first and second logical networks. The method can also include determining an encapsulation overhead metric associated with one of the first or second logical networks, and weighting one of the first or second path cost by the encapsulation overhead metric. Further, the method can include selecting one of the gateways as an optimal gateway. The selection can be based on the computed path costs.
Abstract:
A method is provided in one example and includes receiving, at a receiving node, a packet that comprises information indicative of an internet protocol address and a segmentation identification, selecting a virtual routing and forwarding table corresponding with the segmentation identification, identifying a destination node based, at least in part, on the internet protocol address and the virtual routing and forwarding table, and transmitting the packet to the destination node.
Abstract:
An example method for facilitating multiple mobility domains with VLAN translation in a multi-tenant network environment is provided and includes detecting attachment of a first virtual machine on a first port and a second virtual machine on a second port of a network element, the first port and the second port being configured with a first mobility domain and a second mobility domain, respectively, and the first and second virtual machines being configured on a same original VLAN, determining whether the original VLAN falls within a pre-configured VLAN range, translating the original VLAN to a first VLAN on the first port corresponding to the first mobility domain and to a second VLAN on the second port corresponding to the second mobility domain, and segregating traffic on the original VLAN into the first VLAN and the second VLAN according to the respective mobility domains for per-port VLAN significance.
Abstract:
A method is provided in one example embodiment and includes establishing at least one fixed topology distribution tree in a network, where the fixed topology distribution tree comprises one root node and a plurality of leaf nodes connected to the root node; maintaining at the root node an indication of multicast group interests advertised by the leaf nodes; and pruning traffic at the root node based on the advertised multicast group interests of the leaf nodes. In one embodiment, the root node is a spine switch and each of the leaf nodes is a leaf switch and each of the leaf nodes is connected to the root node by a single hop.