Abstract:
Systems and methods for treating arrhythmias are disclosed. In one embodiment an LCP comprises a housing, a plurality of electrodes for sensing electrical signals emanating from outside of the housing, an energy storage module disposed within the housing, and a control module disposed within the housing and operatively coupled to the plurality of electrodes. The control module may be configured to receive electrical signals via two or more of the plurality of electrodes and determine if the received electrical signals are indicative of a command for the LCP to deliver ATP therapy. If the received electrical signals are indicative of a command for the LCP to deliver ATP therapy, the control module may additionally determine whether a triggered ATP therapy mode of the LCP is enabled. If the triggered ATP therapy mode is enabled, the control module may cause the LCP to deliver ATP therapy via the plurality of electrodes.
Abstract:
A system for recharging an implantable medical device having a rechargeable battery while the implantable medical device is implanted within a patient includes a recharge energy source configured to be disposed exterior to the patient and a recharging bridge configured to be implanted within the patient. The recharging bridge is configured to facilitate energy transfer from the recharge energy source to the implantable medical device.
Abstract:
An implantable medical device includes a rechargeable battery and a battery recharging assembly. The battery recharging assembly includes an energy receiver for capturing energy from an externally applied charging field, a battery charging circuit that is operably coupled to the rechargeable battery for recharging the rechargeable battery, and a demodulator that is operably coupled to the energy receiver and the battery charging circuit. The demodulator demodulates the energy captured by the energy receiver and delivers demodulated energy to the battery charging circuit to be used to charge the rechargeable battery. The IMD includes a controller that is configured to control operation of at least part of the IMD.
Abstract:
Systems and methods for managing communication strategies between implanted medical devices. Methods include temporal optimization relative to one or more identified conditions in the body. A selected characteristic, such as a signal representative or linked to a biological function, is assessed to determine its likely impact on communication capabilities, and one or more communication strategies may be developed to optimize intra-body communication.
Abstract:
This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
Abstract:
Methods and devices for testing and configuring implantable medical device systems. A first medical device and a second medical device communicate with one another using test signals configured to provide data related to the quality of the communication signal to facilitate optimization of the communication approach. Some methods may be performed during surgery to implant one of the medical devices to ensure adequate communication availability.
Abstract:
A system for recharging an implantable medical device having a rechargeable battery while the implantable medical device is implanted within a patient includes a recharge energy source configured to be disposed exterior to the patient and a recharging bridge configured to be implanted within the patient. The recharging bridge is configured to facilitate energy transfer from the recharge energy source to the implantable medical device.
Abstract:
Embodiments herein relate to medical devices including volume filling leads and methods of use to treat cancerous tumors within a bodily tissue. In an embodiment, a lead for a cancer treatment system is described. The lead can include a lead body having a proximal end and a distal end, where the lead body can define a lumen. The lead can include an expandable lead head connected to the distal end of the lead body, where the lead head can be configured to be expanded between a first non-expanded position and a second expanded position in order to fill an intracorporeal void. The lead can include two or more electrodes disposed on an outer surface of the lead head and two or more electrical conductors configured to provide electrical communication between the two or more electrodes and the proximal end of the lead body. Other embodiments are also included herein.
Abstract:
This document discusses, among other things, systems and methods to fabricate and operate an implantable medical device. The implantable medical device can include a housing portion defining an interior chamber. The implantable medical device can include a circuit in the interior chamber. The implantable medical device can include a first electronic component that is not in the interior chamber. The implantable medical device can include a substrate coupled to the housing, the substrate including a first via extending through the substrate, the first via electrically coupling the first electronic component to the circuit.
Abstract:
In an example, an apparatus is described that includes an implantable housing, a heart signal sensing circuit configured to sense intrinsic electrical heart signals, a ventricular tachyarrhythmia (VT) detector circuit, operatively coupled to the heart signal sensing circuit, the detector circuit operable to detect a VT based on the sensed heart signals, a processor configured to control delivery of an anti-tachyarrhythmia pacing (ATP) therapy based on the detected VT, and an energy delivery circuit configured to deliver the ATP therapy in response to the detected VT, wherein the apparatus does not include a shock circuit capable of delivering a therapeutically-effective cardioverting or defibrillating shock.