摘要:
Relocating data in a virtualized environment maintained by a hypervisor administering access to memory with a Cache Page Table (‘CPT’) and a Physical Page Table (‘PPT’), the CPT and PPT including virtual to physical mappings. Relocating data includes converting the virtual to physical mappings of the CPT to virtual to logical mappings; establishing a Logical Memory Block (‘LMB’) relocation tracker that includes logical addresses of an LMB, source physical addresses of the LMB, target physical addresses of the LMB, a translation block indicator for each relocation granule, and a pin count associated with each relocation granule; establishing a PPT entry tracker including PPT entries corresponding to the LMB to be relocated; relocating the LMB in a number of relocation granules including blocking translations to the relocation granules during relocation; and removing the logical addresses from the LMB relocation tracker.
摘要:
Relocating data in a virtualized environment maintained by a hypervisor administering access to memory with a Cache Page Table (‘CPT’) and a Physical Page Table (‘PPT’), the CPT and PPT including virtual to physical mappings. Relocating data includes converting the virtual to physical mappings of the CPT to virtual to logical mappings; establishing a Logical Memory Block (‘LMB’) relocation tracker that includes logical addresses of an LMB, source physical addresses of the LMB, target physical addresses of the LMB, a translation block indicator for each relocation granule, and a pin count associated with each relocation granule; establishing a PPT entry tracker including PPT entries corresponding to the LMB to be relocated; relocating the LMB in a number of relocation granules including blocking translations to the relocation granules during relocation; and removing the logical addresses from the LMB relocation tracker.
摘要:
Relocating data in a virtualized environment maintained by a hypervisor administering access to memory with a Cache Page Table (‘CPT’) and a Physical Page Table (‘PPT’), the CPT and PPT including virtual to physical mappings. Relocating data includes converting the virtual to physical mappings of the CPT to virtual to logical mappings; establishing a Logical Memory Block (‘LMB’) relocation tracker that includes logical addresses of an LMB, source physical addresses of the LMB, target physical addresses of the LMB, a translation block indicator for each relocation granule, and a pin count associated with each relocation granule; establishing a PPT entry tracker including PPT entries corresponding to the LMB to be relocated; relocating the LMB in a number of relocation granules including blocking translations to the relocation granules during relocation; and removing the logical addresses from the LMB relocation tracker.
摘要:
Dynamic control of memory affinity is provided for a shared memory logical partition within a shared memory partition data processing system having a plurality of nodes. The memory affinity control approach includes: determining one or more home node assignments for the shared memory logical partition, with each assigned home node being one node of the plurality of nodes of the system; determining a desired physical page level per node for the shared memory logical partition; and allowing the shared memory partition to run and using the home node assignment(s) and its desired physical page level(s) in the dispatching of tasks to physical processors in the nodes and in hypervisor page memory management to dynamically control memory affinity of the shared memory logical partition in the data processing system.
摘要:
Hypervisor managed memory paging is provided in a data processing system having multiple logical partitions. The data processing system includes a shared memory pool defined within physical memory. The shared memory pool includes a volume of physical memory with dynamically adjustable sub-volumes or sets of physical pages associated with the multiple logical partitions. Each sub-volume or set is associated with a particular logical partition and includes mapped logical memory pages for that logical partition. A hypervisor memory manager interfaces the multiple logical partitions and the shared memory pool, and manages access to logical memory pages within the shared memory pool. The hypervisor memory manager further manages page-out and page-in of logical memory pages from the shared memory pool to one or more external paging devices. This page-out and page-in managing by the hypervisor memory manager is transparent to the multiple logical partitions.
摘要:
Hypervisor page fault processing logic is provided for a shared memory partition data processing system. The logic, responsive to an executing virtual processor of the shared memory partition data processing system encountering a hypervisor page fault, allocates an input/output (I/O) paging request to the virtual processor from an I/O paging request pool and increments an outstanding I/O paging request count for the virtual processor. A determination is then made whether the outstanding I/O paging request count for the virtual processor is at a predefined threshold, and if not, the logic places the virtual processor in a wait state with interrupt wake-up reasons enabled based on the virtual processor's state, otherwise, it places the virtual processor in a wait state with interrupt wake-up reasons disabled.
摘要:
Methods, apparatus, and products are disclosed for controlling an operational mode for a logical partition on a computing system that include: receiving, in a hypervisor installed on the computing system, a processor compatibility mode for the logical partition and a firmware compatibility mode for the logical partition, the processor compatibility mode specifying a processor architecture version configured for the logical partition, and the firmware compatibility mode specifying a firmware architecture version configured for the logical partition; providing, by the hypervisor for the logical partition, a firmware interface in dependence upon the firmware compatibility mode; and providing, by the hypervisor for the logical partition, a processor interface in dependence upon the processor compatibility mode.
摘要:
Transparent hypervisor pinning of critical memory areas is provided for a shared memory partition data processing system. The transparent hypervisor pinning includes receiving at a hypervisor a hypervisor call initiated by a logical partition to register a logical memory area of the logical partition with the hypervisor. Responsive to this hypervisor call, the hypervisor transparently determines whether the logical memory is a critical memory area for access by the hypervisor. If the logical memory area is a critical memory area, then the hypervisor automatically pins the logical memory area to physical memory of the shared memory partition data processing system, thereby ensuring that the memory area will not be paged-out from physical memory to external storage, and thus ensuring availability of the logic memory area to the hypervisor.
摘要:
Methods, apparatus, and products are disclosed for controlling an operational mode for a logical partition on a computing system that include: receiving, in a hypervisor installed on the computing system, a processor compatibility mode for the logical partition and a firmware compatibility mode for the logical partition, the processor compatibility mode specifying a processor architecture version configured for the logical partition, and the firmware compatibility mode specifying a firmware architecture version configured for the logical partition; providing, by the hypervisor for the logical partition, a firmware interface in dependence upon the firmware compatibility mode; and providing, by the hypervisor for the logical partition, a processor interface in dependence upon the processor compatibility mode.
摘要:
Dynamic control of memory affinity is provided for a shared memory logical partition within a shared memory partition data processing system having a plurality of nodes. The memory affinity control approach includes: determining one or more home node assignments for the shared memory logical partition, with each assigned home node being one node of the plurality of nodes of the system; determining a desired physical page level per node for the shared memory logical partition; and allowing the shared memory partition to run and using the home node assignment(s) and its desired physical page level(s) in the dispatching of tasks to physical processors in the nodes and in hypervisor page memory management to dynamically control memory affinity of the shared memory logical partition in the data processing system.