Abstract:
An optical filter includes a transparent substrate, a first film stack and a second film stack. The first and second film stacks each includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The first film stack is defined as (HL)7(0.76H0.76L)6, and the second film stack is defined as 0.5(HL)(1.3H1.3L)9(HL)8, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, the expression enclosed in each parenthesis represents a filter cavity, and the superscript represents the number of repetition of the expression enclosed in that parenthesis.
Abstract:
An optical filter includes a transparent substrate, a first film stack and a second film stack. The first and second film stacks each includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The first film stack is defined as (HL)7(0.76H0.76L)6, and the second film stack is defined as 0.5(HL)(1.3H1.3L)9(HL)8, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a first reference wavelength associated with the optical filter, the expression enclosed in each parenthesis represents a filter cavity, and the superscript represents the number of repetition of the expression enclosed in that parenthesis.
Abstract:
A layer-type complex structure includes a base layer, a decoration layer fixed to the top surface of the base layer, a cured resin layer attached to the top surface of the decoration layer and a portion of the base layer that is not covered by the decoration layer, and a decoration structure formed on the top surface of the cured resin layer. The decoration layer provides patterns and/or colors displayed on the surface of the complex structure. The decoration structure is a smooth surface or a stereoscopic surface.
Abstract:
A method for removing a protective film from a surface of an article is provided. The protective film includes a primary protective layer (e.g., a diamond-like carbon layer) and a transition layer, the transition layer being formed directly upon the surface of the article and thereby facilitating an attachment/bond of the protective film to the article. The method includes the step of: disposing/placing the article having the protective film in a reaction chamber; bombarding the protective film (especially, the primary protective layer) with oxidative plasma beams along an edge portion of the protective film, the bombarding occurring until the transition layer in particular is exposed; and bombarding the transition layer with oxidative plasma beams to damage a configuration of the transition layer, thereby making it possible to remove the protective film.
Abstract:
An exemplary portable communication device (100) includes a main body (10), an electrically conductive layer (20), and an electrochromic layer (30). The main body has an outer surface. The electrically conductive layer is coated onto the outer surface of the main body. The electrochromic layer contains an electrochromic material. The electrochromic layer is coated onto the electrically conductive layer, and is electrically connected with the main body across the electrically conductive layer.
Abstract:
An exemplary apparatus facilitating the synthesis of chiral carbon nanotubes includes a reaction chamber, and a first electrode and a second electrode disposed in the reaction chamber. The first electrode and the second electrode are spaced apart from each other and define a space therebetween. The space is configured for receiving a catalyst therein. The first electrode is rotatable around an axis to thereby generate an electric field between the first electrode and the second electrode with a periodic variation in direction when a voltage is applied between the first electrode and the second electrode. The axis is substantially perpendicular to a surface of the second electrode facing toward the first electrode. Methods facilitating the synthesis of chiral carbon nanotubes are also provided.
Abstract:
An optical filter for screening out infrared and ultraviolet light includes a transparent substrate and a film stack formed on the substrate. The film stack includes a number of high refractive index layers and a number of low refractive index layers alternately stacked one on another. The film stack is represented as follows: (3.5H3.5L)7(2.5H2.5L)7(HL)6(0.76H0.76L)6, wherein, H represents a high refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, L represents a low refractive index layer having a base optical thickness equal to one fourth of a reference wavelength associated with the optical filter, expressions enclosed in each parenthesis represent filter cavities, and superscripts represents the number of repetitions of the expression enclosed in that parenthesis.