Abstract:
Embodiments in accordance with the present invention provide circuits and methods for driving light sources, e.g., a light-emitting diode (LED) light source. In one embodiment, a lamp includes a rectifier rectifying an AC voltage to a rectified AC voltage, an LED light source, and a switch coupled to the LED light source in series controlling a current through the LED light source according to a predetermined current reference. The LED light source and the switch coupled in series receive the rectified AC voltage while the switch is controlled linearly.
Abstract:
A circuit for driving a light source includes a voltage converter, a switch and a controller. The voltage converter converts an AC input voltage signal to a first rectified AC voltage signal. The voltage converter further generates an average signal proportional to an average voltage level of the first rectified AC voltage signal. The switch is coupled to the light source in series. The controller coupled to the voltage converter and the switch compares the first rectified AC voltage signal with the average signal to generate a pulse signal. The controller further generates a dimming control signal based on the pulse signal to control the switch thereby controlling dimming of the light source.
Abstract:
A controller for controlling dimming of a light source includes a detection pin, an input signal pin, and a monitoring pin. The detection pin is operable for monitoring a rectified voltage and for detecting whether the rectified voltage comes from a TRIAC dimmer or an on/off switch dimmer. The input signal pin is operable for receiving an input signal indicative of the rectified voltage and the controller controls dimming of the light source according to the input signal if the rectified voltage comes from a TRIAC dimmer. The monitoring pin is operable for receiving a monitoring signal indicating an operation of the on/off switch dimmer and the controller controls dimming of the light source according to the monitoring signal if the rectified voltage comes from an on/off switch dimmer.
Abstract:
There is provided a driving circuit for controlling power of a light source. The driving circuit includes a power converter and a dimming controller. The power converter is coupled between a power source and the light source, and can receive power from the power source and provide a regulated power to the light source. The dimming controller is coupled to the power converter, and can receive a switch monitoring signal. The switch monitoring signal can indicate an operation of a power switch coupled between the power source and the driving circuit. The dimming controller is further operable for adjusting the regulated power from the power converter by controlling a switch coupled in series with the light source according to the switch monitoring signal.
Abstract:
A portable lighting device includes a power source, a controller, and a load. The controller comprises a power input terminal which is electrically connected to the power source via a switch. The load is electrically connected to a power output terminal of the controller and is capable of providing a feedback signal. The controller regulates the power being provided to the load according to the feedback signal and a conduction status of the switch.
Abstract:
In one embodiment, a driving circuit includes an AC/DC converter which converts an AC voltage to a DC voltage and a DC/DC linear regulator which regulates a current through, e.g., an LED light source, according to a first current reference if a monitoring signal indicating the DC voltage is within a predetermined range, and regulates the current according to a second current reference less than the first current reference if the monitoring signal is beyond the predetermined range. In another embodiment, a controller controlling power to an LED light source turns on a first plurality of LEDs and turns off a second plurality of LEDs if a monitoring signal indicative of a DC voltage received by the LED light source is within a predetermined range, and turns on both first and second plurality of LEDs if the monitoring signal is beyond the predetermined range.
Abstract:
A portable lighting device includes a controller, a power source that provides a voltage, and a load that includes a light emitting diode (LED) light source. The controller receives the voltage and regulates a current of the LED light source based on a sensing signal indicating the voltage of the power source. The controller regulates the current of the LED light source to a first current level if the voltage of the power source is greater than a first voltage level, and to a second current level if the voltage of the power source is less than a second voltage level. The second voltage level is less than the first voltage level. The controller regulates the current of the LED light source to vary according to the sensing signal if the voltage of the power source is between the first voltage level and the second voltage level.
Abstract:
A circuit for driving a vehicle lamp includes a current path coupled between a power line and ground, and a monitoring unit coupled to the power line. The current path includes a dummy load. The monitoring unit can monitor a testing signal applied to the power line. The testing signal can test whether the vehicle lamp operates properly. The monitoring unit can conduct the current path to enable a current to flow through the dummy load to ground to decrease a total resistance of the circuit if the testing signal is detected.
Abstract:
Embodiments in accordance with the present invention provide circuits and methods for driving a light-emitting diode (LED) light source. In one embodiment, a printed circuit board (PCB) includes a bridge rectifier rectifying an AC voltage to a rectified AC voltage, an LED light source, and a first switch coupled to the LED light source in series controlling a current through the LED light source according to a predetermined current reference. The LED light source and the first switch coupled in series receive the rectified AC voltage while the first switch is controlled linearly. The circuit further includes a current path coupled in parallel with the LED light source and an illuminated switch coupled between the AC power source and the bridge rectifier.
Abstract:
Embodiments in accordance with the present invention provide circuits and methods for driving a light-emitting diode (LED) light source. In one embodiment, a printed circuit board (PCB) includes a bridge rectifier rectifying an AC voltage to a rectified AC voltage, an LED light source, and a first switch coupled to the LED light source in series controlling a current through the LED light source according to a predetermined current reference. The LED light source and the first switch coupled in series receive the rectified AC voltage while the first switch is controlled linearly. The circuit further includes a current path coupled in parallel with the LED light source and an illuminated switch coupled between the AC power source and the bridge rectifier.