Abstract:
Systems, methods, apparatus, and computer program products are provided for assigning parameters to a geographic area, wherein the parameters may be used to associate a speed limit with the geographic area. For example, in one embodiment, a geofenced area that (a) corresponds to a geographic area and (b) comprises one or more street segments is identified. Additionally, speed data associated with one of more of the street segments is received. After receiving the speed data, a speed limit is (a) determined for one or more of the street segments and (b) associated with the geofenced area.
Abstract:
Systems, methods, apparatus, and computer program products are provided for assigning parameters to a geofenced area. For example, in one embodiment, a geofenced area that (a) corresponds to a geographic area and (b) comprises one or more street segments is defined. Speed parameters can be assigned to the geofenced area. After receiving speed data, it can be determined whether the speed parameters have been exceeded.
Abstract:
Systems, methods, apparatus, and computer program products are provided for identifying overlapping areas. For example, in one embodiment, telematics data can be collected as vehicles traverse various geographic areas. Then, the areas traversed by the vehicles can be displayed to identify overlapping areas.
Abstract:
Various embodiments of the present invention are directed to a fleet management computer system for assessing vehicle efficiency. According to various embodiments, the fleet management computer system is configured for receiving and assessing vehicle telematics data in order to determine an idle percentage of engine run time value representing the percentage of the vehicle's engine run time during which the vehicle's engine was idling during the one or more time periods. In addition, the fleet management computer system may be configured for assessing vehicle telematics data in order to identify segment of engine idle time and generate a graphical display indicating various attributes of the identified idle time segments. The idle time percentage and idle time segments generated by the system can be used to assess the efficiency of vehicles and/or vehicle operators in an associated fleet.
Abstract:
Various embodiments of the present invention are directed to a fleet management computer system configured for assessing operational delays. According to various embodiments, the fleet management computer system may be configured for assessing service data in order to identify delay code segments representing an occurrence indicated by a vehicle operator as delaying a delivery-related activity. In certain embodiments, the fleet management computer system may be configured for generating a graphical representation of such delay code segments. In addition, various embodiments of the fleet management computer system may be configured for comparing planning data and operational data to identify off-course portions of a travel path of a vehicle that do not follow a predefined planned route.
Abstract:
Various embodiments of the present invention are directed to a fleet management computer system configured for forecasting travel delays within a geographic area. According to various embodiments, the fleet management computer system is configured to assess operational data, including vehicle telematics data. In various embodiments, the fleet management computer system is further configured to determine, based on the operational data, a value indicative of the average amount of travel delay time per unit of distance within the geographic area, such as the average amount of idle time second per mile of travel with the geographic area.
Abstract:
Systems, methods, apparatus, and computer program products are provided for assigning parameters to a geographic area, wherein the parameters may be used to associate a speed limit with the geographic area. For example, in one embodiment, a geofenced area that (a) corresponds to a geographic area and (b) comprises one or more street segments is identified. Additionally, speed data associated with one of more of the street segments is received. After receiving the speed data, a speed limit is (a) determined for one or more of the street segments and (b) associated with the geofenced area.
Abstract:
Systems, methods, apparatus, and computer program products are provided for assigning parameters to a geofenced area. For example, in one embodiment, a geofenced area that (a) corresponds to a geographic area and (b) comprises one or more street segments is defined. Speed parameters can be assigned to the geofenced area. After receiving speed data, it can be determined whether the speed parameters have been exceeded.
Abstract:
A computer system that is configured to: (A) define a geofence surrounding a geographic area; (B) gather information associated with the geofenced area; and (C) assign one or more parameters to the geofenced area based on the information gathered, wherein at least one of the assigned parameters is used to monitor the performance of a delivery vehicle driver while the delivery vehicle driver is operating a delivery vehicle within the geofenced area. In particular embodiments, the parameters include a backup limit defining a number of times a delivery vehicle operating within the geofenced area is permitted to back up while operating the delivery vehicle within the geofenced area (e.g., during a particular delivery cycle). In other embodiments, the parameters include a maximum speed limit for the geofenced area. The system may be adapted to automatically generate an alert in response to the delivery vehicle operating outside of the defined parameters.
Abstract:
A routing and scheduling computer system that is adapted to define a plurality of geofenced areas and to monitor vehicle activity within each of those areas (e.g., via telematics sensors mounted on vehicles traveling within the areas). The system may be adapted to use information regarding the monitored vehicle activity to estimate: (1) a first amount of time associated with the delivery of a plurality of parcels to one or more respective locations within a first one of the geofenced areas; and (2) a second amount of time associated with the delivery of a plurality of parcels to one or more respective locations within a second one of the geofenced areas. The system may then route a particular vehicle to make one or more pickups or deliveries within the first or second geographic areas based at least in part on the first and second estimates of time.