Abstract:
A method including receiving, at a first router of a plurality of routers, a first message from the plurality of routers. The first message includes a designated router priority and a weight for each respective router. Based on the designated router priorities, a designated router is elected and a one or more eligible group designated routers are determined. The method determines whether the first router is the designated router or the at least one eligible group designated router. If the first router is the designated router, the first router provides a second message to the remaining routers indicating the eligible group designated routers and their weights.
Abstract:
A system and associated methods provide a scalable solution for managing multiple multicast flows within a multicast group of a multicast network. The system groups redundant sources of the multicast group according to their associated multicast flows, assigns flow identifiers to each redundant source indicative of their associated multicast flows, and facilitates Single Forwarder election to select a Single Forwarder that belongs to the appropriate multicast flow. The system provides control plane extensions that enable signaling of which redundant source belongs to which multicast flow.
Abstract:
Techniques for connectivity issue remediation are provided. A first link trace message is transmitted from a source end point to a destination end point. A first topology graph for a network is generated based on the first link trace message, and a presence of a connectivity issue in the network is detected. A second link trace message is transmitted from the source end point to the destination end point. A second topology graph for the network is automatically generated based on second link trace message, and a component in the network that caused the connectivity issue is identified based on comparing the first and second topology graphs.
Abstract:
A method is performed by a network controller that is configured to control routers configured to forward a multicast flow downstream from a first hop router that is a root of a multicast tree formed by the routers to last hop routers that terminate branches of the multicast tree, respectively. The method includes collecting operational configuration information from the routers and constructing a topological view of the multicast tree based on the operational configuration information; causing the routers to forward multicast probes downstream from the first hop router along all of the branches toward the last hop routers to trace the multicast tree; receiving, from particular ones of the last hop routers that received the multicast probes, indications that the multicast probes were received; and detecting failures in the multicast tree based on the indications and the topological view.
Abstract:
Techniques and mechanisms for a control plane approach for dense topologies that focusses on discovering shared ECMP groups in the control plane independent of per-prefix learning and then learning prefixes via these shared ECMP groups instead of learning prefixes via one next-hop at a time. In dense topologies, this approach helps minimize BGP path scale, corresponding signaling and enables control plane scaling that is an order of magnitude higher than a traditional eBGP control plane. During link and node topology changes, the described control plane approach enables control plane signaling that is prefix independent and an order of magnitude lower. A control plane approach to path-list sharing and prefix independent signaling on link and node topology changes enables prefix independent convergence (PIC) in scenarios that would not be possible otherwise with traditional FIB driven path-list sharing and PIC.
Abstract:
In an embodiment, a method comprises receiving a path advertisement comprising information about an available path and a well-known community value associated with the available path. A modified best path calculation is performed in response to receiving the available path either from a higher-ranked device or from a device that is not participating in diverse path calculation, resulting in creating a particular best path. The particular best path is advertised to other routers with or without a restriction indicator based on whether it is a client learned path or non-client iBGP peer learned path and based on whether the advertisement is directed to a client or a non-client iBGP peer.
Abstract:
Techniques for generating and utilizing overlay-based Border Gateway Protocol (BGP) Operations, Administration, and Maintenance (OAM) packets to detect issues with an underlay network. The techniques may include receiving, from a BGP peer device via a control plane path, an OAM probe indicating a forwarding path to be used for sending the traffic to a destination associated with a prefix. The techniques may also include determining, based at least in part on the OAM probe, that a next-hop device is incapable of being utilized to forward the traffic to the destination, the next-hop device determined based on an origination of the prefix. The techniques may further include performing a policy-based action based at least in part on determining that the next-hop device is incapable of being utilized to forward the traffic to the destination.
Abstract:
A system and associated methods provide solutions for reducing a volume of traffic through a multicast network attributed to repeated maintenance messages, which are required in order to maintain a multicast connection. The system configures provider edge devices to generate and send maintenance messages on behalf of members of a multicast group to establish and maintain the multicast connection and provides options for determining unknown locations of sources and/or subscribers, thereby reducing the overall volume of traffic transmitted over the multicast network.
Abstract:
Techniques and mechanisms for a control plane approach for dense topologies that focusses on discovering shared ECMP groups in the control plane independent of per-prefix learning and then learning prefixes via these shared ECMP groups instead of learning prefixes via one next-hop at a time. In dense topologies, this approach helps minimize BGP path scale, corresponding signaling and enables control plane scaling that is an order of magnitude higher than a traditional eBGP control plane. During link and node topology changes, the described control plane approach enables control plane signaling that is prefix independent and an order of magnitude lower. A control plane approach to path-list sharing and prefix independent signaling on link and node topology changes enables prefix independent convergence (PIC) in scenarios that would not be possible otherwise with traditional FIB driven path-list sharing and PIC.
Abstract:
In one embodiment, a method herein comprises: determining a set of flows to be monitored within a computer network; determining, by the device, a set of nodes within the computer network through which the set of flows traverse; determining monitoring capabilities for the set of nodes; generating an assignment for each particular node of the set of nodes to monitor a subset of one or more flows of the set of flows based on the monitoring capabilities of each particular node, wherein the assignment for each particular node of the set of nodes ensures that each flow of the set of flows is monitored by at least one or more nodes of the set of nodes; and instructing the set of nodes to monitor the set of flows according to the assignment for each particular node of the set of nodes.