Abstract:
Disclosed herein are systems for shaping a glass sheet comprising a roll conveyor comprising a plurality of rollers for conveying the glass sheet along a plane; a lift jet array comprising a plurality of nozzles, one or more of the plurality of nozzles comprising a tip having a plurality of orifices; and a shaping mold located above the roll conveyor, wherein the lift jet array is positioned below the roll conveyor such that each nozzle tip is located above the centerline of the plurality of rollers. Also disclosed herein are methods for shaping a glass sheet comprising heating the glass sheet and conveying the glass sheet on a roll conveyor to a position between the lift jet array and the shaping mold, wherein gas flows from the lift jet array with a force sufficient to lift the glass sheet from the roll conveyor.
Abstract:
Provided herein is a method for producing glass-ceramic sheets. The method includes texturing at least one surface of a first glass sheet, and stacking the first glass sheet and a second glass sheet. The first glass sheet and the second glass sheet are stacked so that the textured surface of the first glass sheet contacts a surface of the second glass sheet. The first and second glass sheets are cerammed. After cooling, the cerammed first and second glass sheets are separated. Also provided is a pre-form for producing glass-ceramic sheets. The pre-form includes a first glass sheet having a textured surface, and a second glass sheet contacting the first glass sheet. The textured surface of the first glass sheet is in contact with a surface of the second glass sheet.
Abstract:
Disclosed herein are systems for shaping a glass sheet comprising a roll conveyor comprising a plurality of rollers for conveying the glass sheet along a plane; a lift jet array comprising a plurality of nozzles, one or more of the plurality of nozzles comprising a tip having a plurality of orifices; and a shaping mold located above the roll conveyor, wherein the lift jet array is positioned below the roll conveyor such that each nozzle tip is located above the centerline of the plurality of rollers. Also disclosed herein are methods for shaping a glass sheet comprising heating the glass sheet and conveying the glass sheet on a roll conveyor to a position between the lift jet array and the shaping mold, wherein gas flows from the lift jet array with a force sufficient to lift the glass sheet from the roll conveyor.
Abstract:
A method of forming a glass sheet comprises: (a) forming a ribbon of glass from molten glass with a pair of forming rollers; (b) reducing horizontal temperature variability of the ribbon of glass to be 10° C. or less across 80 percent of an entire width of the ribbon of glass before the ribbon of glass cools to a glass transition temperature; (c) controlling a cooling rate of the ribbon of glass while the ribbon of glass moves vertically downward within a setting zone such that the ribbon of glass has a first average cooling rate before the ribbon of glass cools to the glass transition temperature and a second average cooling rate after the ribbon of glass cools to the glass transition temperature, the first average cooling rate being less than the second average cooling rate; and (d) separating a glass sheet from the ribbon of glass.
Abstract:
A method of forming a glass sheet comprises: (a) forming a ribbon of glass from molten glass with a pair of forming rollers; (b) reducing horizontal temperature variability of the ribbon of glass to be 10° C. or less across 80 percent of an entire width of the ribbon of glass before the ribbon of glass cools to a glass transition temperature; (c) controlling a cooling rate of the ribbon of glass while the ribbon of glass moves vertically downward within a setting zone such that the ribbon of glass has a first average cooling rate before the ribbon of glass cools to the glass transition temperature and a second average cooling rate after the ribbon of glass cools to the glass transition temperature, the first average cooling rate being less than the second average cooling rate; and (d) separating a glass sheet from the ribbon of glass.
Abstract:
A segmented thermal barrier for a combustion chamber surface of an internal combustion engine. The segmented thermal barrier includes a plurality of modules, each module with a support and a shield. The edges of shields of at least two adjacent modules are spaced apart by a distance.
Abstract:
A composite thermal barrier and methods of applying the composite thermal barrier to a metallic surface within a combustion chamber of an engine. The composite thermal barrier includes at least one metallic support structure, a metallic skin, and an insulation material. The metallic support structure is connected to a metallic surface within the combustion chamber of the engine. The metallic skin is disposed adjacent to the metallic support structure to define a void space between the metallic skin and the metallic surface. The insulation material is contained within the volume to form the composite thermal barrier.
Abstract:
A composite thermal barrier and methods of applying the composite thermal barrier to a metallic surface within a combustion chamber of an engine. The composite thermal barrier includes at least one metallic support structure, a metallic skin, and an insulation material. The metallic support structure is connected to a metallic surface within the combustion chamber of the engine. The metallic skin is disposed adjacent to the metallic support structure to define a void space between the metallic skin and the metallic surface. The insulation material is contained within the volume to form the composite thermal barrier.
Abstract:
Disclosed herein are systems for shaping a glass sheet comprising a roll conveyor comprising a plurality of rollers for conveying the glass sheet along a plane; a lift jet array comprising a plurality of nozzles, one or more of the plurality of nozzles comprising a tip having a plurality of orifices; and a shaping mold located above the roll conveyor, wherein the lift jet array is positioned below the roll conveyor such that each nozzle tip is located above the centerline of the plurality of rollers. Also disclosed herein are methods for shaping a glass sheet comprising heating the glass sheet and conveying the glass sheet on a roll conveyor to a position between the lift jet array and the shaping mold, wherein gas flows from the lift jet array with a force sufficient to lift the glass sheet from the roll conveyor.