Abstract:
A three-phase AC-DC converter is provided that can offer a low total harmonic distortion (THD) of input current and good power factor with the capability of soft-switching of the active switches. In one aspect, a phase shift is introduced to the gate signal of one of the primary side active switches of the three-phase AC-DC converter and the gate signal of a corresponding one of the secondary side active switches of the three-phase AC-DC converter.
Abstract:
The present disclosure provides a three-phase AC/DC converter aiming for low input current harmonic. The converter includes an input stage for receiving a three-phase AC input voltage, an output stage for at least one load, and one or more switching conversion stages, each stage including a plurality of half bridge modules. The switches in each module operate with a substantially fixed 50% duty cycle and are connected in a specific pattern to couple a DC-link and a neutral node of the input voltage. The AC/DC converter further includes one or more controllers adapted to vary the switching frequency of the switches in the switching conversion stages based on at least one of load voltage, load current, input voltage, and DC-link voltage. The converter can also include one or more decoupling stages, such as, inductive components adapted to decouple the output stage from the switching conversion stages.
Abstract:
A rack device having a cabinet and power modules stacked in the cabinet is provided. The power module has a frame, an insulative plate, an insulative cover and transformers. The insulative plate is arranged in the frame. The insulative cover is arranged in the frame and disposed spacedly from and parallel with the insulative plate. Each transformer arranged in the frame has a high-voltage set and a low-voltage set electrically connected with each other. The low-voltage sets are arranged on one surface of the insulative plate and do not protrude from the frame, and the high-voltage sets are arranged on another surface of the insulative plate and between the insulative plate and the insulative cover. The frame of each power module is connected with the frame of adjacent power module, and the frame of at least one of the power modules is connected to the cabinet.
Abstract:
A power conversion system applied to a solid state transformer includes a DC link, a plurality of capacitors, and a plurality of power conversion module assemblies. The plurality of capacitors is coupled in series between a positive bus and a negative bus of the DC link. Each of the power conversion module assemblies has a plurality of DC conversion modules. In any of the power conversion module assemblies, input sides of the DC conversion modules are connected in series to form two input ends of the power conversion module assembly, and output sides of the DC conversion modules are connected in parallel to form two output ends of the power conversion module assembly. Each of the plurality of power conversion module assemblies is correspondingly connected to each of the plurality of capacitors.
Abstract:
A three-phase power apparatus with bidirectional power conversion applied to charge a battery of an electric vehicle. The three-phase charging apparatus includes an AC-to-DC conversion unit, a first DC bus, a first DC-to-DC conversion unit, a second DC bus, and a second DC-to-DC conversion unit. The first DC bus is coupled to the AC-to-DC conversion unit. The first DC-to-DC conversion unit includes an isolated transformer, a resonant tank, a first bridge arm assembly, and a second bridge arm assembly. The first bridge arm assembly is coupled to the first DC bus and a primary side of the isolated transformer. The second bridge arm assembly is coupled a secondary side of the isolated transformer. The second DC bus is coupled to the second bridge arm assembly. The second DC-to-DC conversion unit is coupled to the second DC bus and the battery.
Abstract:
A method of operating a micro inverter of a solar power system includes following steps: First, an output power value of a solar photovoltaic module is acquired. Afterward, it is to judge whether the micro inverter executes a power boosting mode. If the power boosting mode is executed, a maximum output power of the micro inverter is boosted from a rated output power value to a maximum output power value. Finally, it is to judge whether the output power value of the solar photovoltaic module is greater than the maximum output power value. If YES, the maximum output power value is outputted from the micro inverter.
Abstract:
A power line communication (PLC) routing system includes a plurality of micro inverters and a data collection apparatus connected to the micro inverters through a power line. After being installed in the building, the micro inverters are registered to the data collection apparatus. When submitting a connection request to the micro inverters but cannot receive the corresponding response, the data collection apparatus commands a micro inverter which has responded the request to transmit the request to another micro inverter which is out of time to response, and re-transmits data from the another micro inverter to the data collection apparatus.
Abstract:
A power supply system includes a voltage conversion circuit and at least one voltage detector. The voltage conversion circuit converts AC voltage into DC voltage. The voltage detector includes a voltage dividing circuit, a phase voltage detection circuit, and a line voltage detection circuit. The voltage dividing circuit is coupled to the voltage conversion circuit to receive AC voltage. The voltage dividing circuit includes multiple impedance elements and multiple voltage dividing nodes to output multiple divided voltages. The phase voltage detection circuit is coupled to one of the voltage dividing nodes of voltage dividing circuit to generate a phase voltage detection signal based on one of the divided voltages. The line voltage detection circuit is coupled to a part of the voltage dividing nodes of voltage dividing circuit to generate a line voltage detection signal based on a part of the divided voltages.
Abstract:
A power apparatus applied in a solid state transformer structure includes an AC-to-DC conversion unit, a first DC bus, and a plurality of bi-directional DC conversion units. First sides of the bi-directional DC conversion units are coupled to the first DC bus. Second sides of the bi-directional DC conversion units are configured to form at least one second DC bus, and the number of the at least one second DC bus is a bus number. The bi-directional DC conversion units receive a bus voltage of the first DC bus and convert the bus voltage into at least one DC voltage, or the bi-directional DC conversion units receive at least one external DC voltage and convert the at least one external DC voltage into the bus voltage.
Abstract:
An auxiliary power circuit of a conversion module is used to supply power to a control unit, and an input end of the conversion module includes an even number of energy storage units coupled in series. The auxiliary power circuit includes an even number of primary-side circuits and a secondary-side circuit. Each primary-side circuit includes a first switch unit, a second switch unit, and a resonance tank. The first switch unit is connected to the second switch unit in series, and is correspondingly connected to one of the energy storage units in parallel. The resonance tank is connected to the second switch unit in parallel. The secondary-side circuit is coupled to the resonance tanks of two of the primary-side circuits to acquire power and supply power to the control unit.