Abstract:
A control apparatus includes an electric current estimation unit to improve a responsiveness of an AC motor. The electric current estimation unit performs, at predetermined intervals, a dq conversion, a correction process, and an inverted dq conversion. The dq conversion calculates d/q axis electric current estimate values based on a detection value of a sensor phase from a sensor, and on an electric current estimate values of two phases of the AC motor other than the sensor phase from a previous cycle. The correction process corrects, during the dq conversion, the d/q axis electric current estimate values in an orthogonal direction that is orthogonal to a sensor phase axis. The inverted dq conversion calculates the electric current estimate values of the two phases other than the sensor phase based on the d/q axis electric current estimate values corrected by the correction process and smoothed by a low-pass filter process.
Abstract:
A control apparatus of an AC motor improves an electric current estimation accuracy of the AC motor. The control apparatus includes an electric current estimation unit that repeatedly performs an inverted dq conversion, a dq conversion, and a correction process. Based on a d/q axis electric current estimate values of a previous cycle, the inverted dq conversion calculates an electric current estimate value of a sensor phase. The dq conversion calculates a d/q axis electric current correction values based on an electric current estimation error of the sensor phase, which is derived from the electric current estimate value and the electric current detection value detected by an electric current detector. The correction process calculates the d/q axis electric current estimate values of a current cycle by correcting the d/q axis electric current estimate values of the previous cycle by using the d/q axis electric current correction values.
Abstract:
A reference current phase sensing part of a sensor phase (W) calculates an α-axis current iα and a β-axis current iβ in a fixed coordinate system formed with respect to a sensor phase as a base. The α-axis current iα is calculated based on a sensed current iw.sns of the sensor phase and a β-axis current iβ is calculated based on command currents iu* and iv* of the other two phases (U, V) determined from a d-axis command current id* and a q-axis command current iq*. Then a current phase xθ=tan−1(iβ/iα) is calculated. A basic wave estimating part calculates an estimated current iu.est of the other phase by calculating an estimation coefficient corresponding to the reference current phase xθ of the sensor phase and multiplying the sensed current iw.sns of the sensor phase by the estimation coefficient.
Abstract:
In a motor control apparatus for controlling an AC motor with an inverter, a current estimation value is calculated based on a current detection value of one phase of the motor and a rotation angle of the motor. A first voltage command is calculated based on the current estimation value and a current command value related to driving of the motor. A second voltage command is calculated based on information related to an actual behavior of the motor. The information depends on the rotation angle or a phase angle of a current command vector. When a rotation speed of the motor is greater than a threshold, a drive signal related to driving of the inverter is generated based on the first voltage command. When the rotation speed is not greater than the threshold, the drive signal is generated based on the second voltage command.
Abstract:
The method of manufacturing a fin-integrated tube for a heat exchanger includes step of disposing a rolling roller group including rolling rollers so as to surround the periphery of a tube, each of the roller crests of the rolling rollers being rounded at an end thereof into an R-shape, widths of the R-shaped ends being gradually increased from one axial end to the other axial end for each of the rolling rollers, and step of causing the roller crests to press the periphery of the tube from the one axial end to the other axial end by axially moving and rotating the rolling roller group relative to the tube so as to deform a part of the periphery of the tube into a spirally projecting portion while shaping it into a spiral fin by gradually squeezing the part of the periphery of the tube using the R-shaped end portions.
Abstract:
A current estimation section of a motor control apparatus carries out the following processing. When an AC motor is controlled under a current feedback control scheme (sine wave control mode or overmodulation control mode), a β-axis current iβ is calculated based on a current detection value iw_sns in a sensor phase and a current command value iv* in one other phase. When the AC motor is controlled under a torque feedback control scheme (rectangular wave control mode), the β-axis current iβ is calculated based on a differential value Δiα of an α-axis current. Then a sensor phase reference current phase θx is calculated to estimate a U-phase current. Thus it is possible to use the current feedback control scheme and the torque feedback control scheme together.
Abstract:
A control apparatus for an AC motor includes a current sensor and an estimation section. The current sensor detects current flowing through one phase of the motor. The estimation section repeats an estimation process. In the estimation process, d-axis and q-axis current estimation values are calculated based on the presently detected current of the one phase and a previous current estimation value of another phase of the motor, and a present current estimation value of each phase is calculated based on smoothed values of the d-axis and q-axis current estimation values. The estimation section performs the estimation process based on a phase lag element. The phase lag element is a difference between the presently detected current and a previous current estimation value of the one phase or the previously detected current.
Abstract:
A controller for a three-phase AC motor includes a current sensor and a current estimation section. The current sensor detects current flowing through one phase of the motor. The one phase is defined as a sensor phase. The current estimation section calculates a current phase relative to an axis of the sensor phase based on α-axis current and β-axis current in a stationary coordinate system defined by a α-axis parallel to the sensor phase axis and a β-phase perpendicular to the sensor phase axis. The current estimation section estimates current flowing through another phase of the motor based on the current phase and the detected current. The current estimation section calculates the α-axis current based on the detected current. The current estimation section calculates the β-axis current based on the detected current and a command value for the current flowing through the other phase of the motor.
Abstract:
A control device for controlling a three phase AC motor with an inverter includes: a sensor phase current acquisition device for a sensor phase current sensed value; a rotation angle acquisition device for a rotation angle sensed value; a number-of-revolutions operation device for the revolution number; a current estimation device for a current estimated value; a first voltage command value operation device for a first voltage command value; a voltage command reference value operation device for a voltage command reference value; a second voltage command value operation device for a second voltage command value; a control mode switching device for switching to a first control mode when the revolution number is more than a threshold, and switching to a second control mode when the revolution number is not more than the threshold; and a torque abnormality monitoring device for monitoring an output torque during the second control mode.
Abstract:
A control device of a three phase AC motor includes: an inverter for driving the motor; a current sensor for sensing current in a sensor phase of the motor; and a controller for switching multiple switching elements in the inverter to control the current of the motor. The controller includes: a revolution number calculation device for calculating the revolution number of the motor; a three-phase voltage command operation device for operating three phase voltage commands to be applied to the motor based on a current command and an electric angle; and a current concentration determination device for determining whether a current concentration is caused based on the three phase voltage commands when the revolution number is not more than a predetermined revolution number. In the current concentration, current not less than a predetermined threshold value flows continuously for a predetermined period in one or more phases of the inverter.